
FIFO Queue Synchronization

by

Moshe Hoffman

A Thesis submitted for the degree

Master of Computer Science

Supervised by

Professor Nir Shavit

School of Computer Science

Tel Aviv University

July 2008

CONTENTS

1. Introduction . 1
1.1 A Statement of the Problem . 2
1.2 Terms and Definitions . 2
1.3 Literature review . 3

2. The Baskets Queue . 5
2.1 The Abstract Baskets Queue . 5
2.2 The Algorithm . 6
2.3 Data Structures . 6
2.4 The Baskets Queue methods . 7
2.5 Solving the ABA problem . 8

3. Correctness . 12
3.1 Correct Set Semantics . 12
3.2 Linearizability of the algorithm 14
3.3 Lock-freedom . 15

4. Evaluation . 18
4.1 The Benchmarked Algorithms . 18
4.2 The benchmarks . 18
4.3 The experiments . 19
4.4 Empirical results . 19

5. Conclusions . 26
5.1 Results . 26
5.2 Future Work . 26

LIST OF FIGURES

2.1 The abstract Baskets Queue . 6
2.2 Concurrent enqueues . 7
2.3 A queue composed of 4 baskets 8
2.4 Types, structures and initialization 8
2.5 The enqueue method . 9
2.6 The dequeue method . 10
2.7 Dequeue illustration . 11
2.8 The free chain procedure . 11

4.1 The 50 % enqueues benchmark 19
4.2 The Enqueue-Dequeue pairs benchmark 20
4.3 The grouped method benchmark 21
4.4 The 50% enqueues benchmark without backoff 22
4.5 The Enqueue-Dequeue pairs benchmark without backoff 23
4.6 The Grouped method calls benchmark without backoff 24
4.7 A typical snapshot of the queue (16 processes) 25

ACKNOWLEDGEMENTS

I would like to thank all those who supported me during my study.
My thesis advisor Prof. Nir Shavit for accepting me, for his expertise, pa-

tience and support throughout my research. Dr. Ori Shalev for his personal
guidance during and before the research, and for introducing me to world of
multiprocessor synchronization. Special gratitude to Jenny Shalev who gave me
the opportunity to complete my studies. I wouldn’t be performing this work
without her help. I thank my father for encouraging me to complete my stud-
ies and for the English grammar lessons. Finally my mother for the love and
support all along the way.

ABSTRACT

FIFO Queues are among the most highly used concurrent data structures, and
over the years have been the subject of a significant body of research. Such
queues are used as buffers in a variety of applications, and in recent years as
key tools in buffering data in high speed communication networks.

Overall, the most popular dynamic-memory lock-free FIFO queue algorithm
in the literature remains the MS-queue algorithm of Michael and Scott. Un-
fortunately, this algorithm, as well as many others, offers no more parallelism
than that provided by allowing concurrent accesses to the head and tail. This
thesis describes the Baskets Queue - a new, highly concurrent lock-free lineariz-
able dynamic memory FIFO queue. The Baskets Queue introduces a new form
of parallelism among enqueue method calls that creates baskets of mixed-order
items instead of the standard totally ordered list. The operations in different
baskets can be executed in parallel. Surprisingly however, the end result is a lin-
earizable FIFO queue, and in fact, it is shown that a basket queue based on the
MS-queue outperforms the original MS-queue algorithm in various benchmarks.

1. INTRODUCTION

Multiprocessors use data-structure in their shared memory to coordinate mul-
tiple execution threads. In order to communicate, the threads manipulate the
contents of the shared memory by applying methods to the shared objects. The
concurrent objects are required to be appear ”atomic” yet be fast and scalable.
This seemingly contradictory requirement poses a great challenge in the design
and implementation of concurrent data-structures.

The conventional method for achieving atomicity is to use spin locks. Each
thread must acquire the shared lock before accessing its critical section, and
release it afterwards. The lock semantics guarantees that only one thread at a
time can acquire it, thus fulfilling the atomicity property. However, locks are
blocking, all other threads that fail to acquire the lock have to wait until the
lock is released. This is an undesired property, as the threads are subject to the
scheduling of the operating system.

To overcome the disadvantages of using locks, researchers have introduced
lock-free and wait-free data-structure. The lock-freedom property guarantees
that every step of the threads assures progress in the system. Thus, in a finite
number of steps, some thread will successfully access the shared resource. Wait-
free algorithms guarantee that any thread will complete its operation given
enough execution time, regardless the execution of other threads.

First-in-first-out (FIFO) queues are important data-structures for thread
synchronization. They are used everywhere, from operating system cores to
user applications, and in recent years also in high speed network equipment.
The vast majority of concurrent queues published in the literature do not scale
to high levels of concurrency. This is due to the fact that the threads try to
synchronize on only two memory locations - the head and the tail of the queue.
These bottlenecks impose a heavy penalty on the queue’s parallelism. In this
thesis I present a new approach that allows added parallelism in the design of
concurrent shared queues.

In the new “basket” approach, instead of the traditional ordered list of nodes,
the queue consists of an ordered list of groups of nodes (baskets). The order of
nodes in each basket need not be specified, and in fact, it is easiest to maintain
them in last-in-first-out (LIFO) order. Nevertheless, I will prove that the end
result is a linearizable FIFO queue. The benefit of the basket technique is that
with little overhead, it introduces a new form of parallelism among enqueue
method calls by allowing insertions into the different baskets to take place in
parallel.

1. Introduction 2

1.1 A Statement of the Problem

The primary goal of this thesis is to improve the time needed for threads to
synchronize in highly concurrent environments. And in particular, to find a
new technique to add more parallelism into FIFO-queues.

1.2 Terms and Definitions

Definition 1 (SMP). SMP is a multiprocessor architecture where two or more
processors are connected to a main memory.

Definition 2 (sequential Queue). A sequential FIFO queue as defined in [1] is
a data structure that supports two methods: enqueue and dequeue. The state of
the queue is a sequence <e1, ..., ek> of items. The queue is initially empty. The
semantics of the enqueue and dequeue methods on a given state <e1, ..., ek> is
described as follows:

• enqueue(n) - inserts n to the end of the queue yielding the new state
<e1, ..., ek, n>

• dequeue() - if the queue is empty, the method returns ”empty” and does
not change the state. Otherwise, it deletes and returns the oldest value
from the queue, yielding a new state <e2, ..., ek>

Definition 3 (Linearizable History). The history of a concurrent object is lin-
earizable if[4]

1. All method calls have a linearization point at some instant between their
invocation and their response

2. All functions appear to occur instantly at their linearization point, behaving
as specified by the sequential definition

Definition 4 (Lock-Freedom). From any point in the execution, in a finite
number of steps some thread will complete a method call.

Definition 5 (Dynamic Memory). Algorithms with dynamic memory allocation
scheme, as opposes to static allocation, supports the allocation of needed memory
in runtime.

Definition 6 (Compare-and-Swap (CAS)). The Compare-and-Swap hardware
operation, also known as the CAS operation, atomically compares a memory
location to a given value, and swaps it with a new given value if they are equal.

Definition 7 (Winner of a CAS operation). When a group of threads try to
change a particular value in memory by applying a compare-and-swap operation,
only one can succeed, hence it is called the winner.

Definition 8 (Overlapping method calls). A group of method calls overlap
if there is a common instant between all the invocations and responses of the
method calls in the group.

1. Introduction 3

Definition 9 (The A-B-A problem). The ABA problem might arise when a
thread rereads a memory location, and if its value is unchanged subsequent to the
first read it establishes that the overall state of the data-structure is unchanged.
However if between the two read operations other threads did alter the data-
structure but a final alteration reset the memory value to its original value, the
ABA problem occurs, because the thread falsly concludes that the data structure
was not changed.

1.3 Literature review

First-in-first-out (FIFO) queues are among the most basic and widely used
concurrent data structures. They have been studied in a static memory setting
[21, 22] and in a dynamic one [2, 4, 5, 7, 6, 9, 13, 14, 16, 17, 18, 19, 20, 22]. The
classical concurrent queue is a linearizable structure that supports the enqueue
and dequeue methods with the usual FIFO semantics.

Gottlieb, Lubachevsky, and Rudolph [2] present a statically-allocated FIFO
queue based on the replace-add synchronization primitive. However the queue
is blocking, as concurrent enqueue and dequeue method calls synchronize on the
array’s cells.

Stone [18] presents a dynamically-allocated FIFO queue based on the double-
compare-and-swap operation. The queue consists of a linked list of nodes. In
order to enqueue a new item, the thread sets the tail pointer to the new item,
and then links the old tail item to the new item. However the algorithm is not
non-blocking: a faulty enqueuer that halts after setting the tail pointer to the
new item may block other dequeuers.

Prakash, Lee, and Johnson [14] present a FIFO queue that is both lock-free
and linearizable. To overcome the blocking problem when slow threads leave
the data structure in an intermediate state, a helping technique is used. A fast
thread can help a slow thread to complete its operation.

Valois [23] presents a linearizable and lock-free dynamically-allocated queue
based on a linked list of nodes. In order to solve the synchronization problems
associated with empty and single-item queues, a dummy node is kept at the head
of the linked list. However, the tail pointer may lag behind the queue’s head,
thus freeing items might be unsafe, and a special memory reference-counting
mechanism must be employed to prevent it.

The best known linearizable FIFO queue implementation is the lock-free
queue of Michael and Scott [10] which is included in the JavaTM Concurrency
Package [8]. Its key feature is that it maintains, in a lock-free manner, a FIFO
ordered list that can be accessed disjointly through head and tail pointers.
This allows enqueue method calls to execute in parallel with dequeue method
calls.

Tsigas and Zhang [21] present a non-blocking and linearizable statically-
allocated queue. By allowing the tail and head pointer to lag at most m behind
the actual head and tail of the queue, only one of m method calls has to apply
a CAS operation to adjust the head or tail. In this way the amortized number
of CAS operations for a dequeue or an enqueue is only 1 + 1/m.

A later article by Ladan-Mozes and Shavit [6] presented the optimistic queue
that in many cases performs better than the MS-queue algorithm. The opti-
mistic doubly-linked list reduces the number of compare-and-swap (CAS) oper-

1. Introduction 4

ations necessary to perform an enqueue and replaces them with simple stores.
However, neither algorithm allows more parallelism then that allowed by the
disjoint head and tail.

In an attempt to add more parallelism, Moir et. al [12] showed how one could
use elimination [15] as a back-off scheme to allow pairs of concurrent enqueue
and dequeue method calls to exchange values without accessing the shared
queue itself. Unfortunately, in order to keep the correct FIFO queue semantics,
the enqueue method cannot be eliminated unless all previous inserted nodes
have been dequeued. Thus, the elimination backoff queue is practical only for
very short queues or high overloads.

2. THE BASKETS QUEUE

2.1 The Abstract Baskets Queue

For a FIFO queue, an execution history is linearizable if one can pick a point
within each enqueue or dequeue method’s execution interval so that the se-
quential history defined by these points maintains the FIFO order.

The definition of linearizability allows overlapping method calls to be re-
ordered arbitrarily. This observation leads to the key idea behind our algorithm:
a group of overlapping enqueue method calls can be enqueued onto the queue
as one group (basket), without the need to specify the order between the nodes.
Due to this fact, nodes in the same basket can be dequeued in any order, as
the order of enqueue method calls can be ”fixed” to meet the dequeue method
calls order.

A concise abstraction of the new queue is a FIFO-ordered list of baskets
where each basket contains one or more nodes (see Fig. 2.1). The baskets fulfill
the following basic rules:

1. Each basket has a time interval in which all its nodes’ enqueue method
calls overlap.

2. The baskets are ordered by the order of their respective time intervals.

3. For each basket, its nodes’ dequeue method calls occur after its time
interval.

4. The dequeue method calls are performed according to the order of baskets.

Two properties define the FIFO order of nodes:

1. The order of nodes in a basket is not specified.

2. The order of nodes in different baskets is the FIFO-order of their respective
baskets.

The basic idea behind these rules is that setting the linearization points of
enqueue method calls that share an interval according to the order of their
respective dequeues, yields a linearizable FIFO-queue.

How do we detect which enqueue method calls overlap, and can therefore fall
into the same basket? The answer is that in algorithms such as the MS-queue,
threads enqueue items by applying a compare-and-swap (CAS) operation to the
queue’s tail pointer, and all the threads that fail on a particular CAS operation
(and also the thread that succeeded) overlap in time. In particular, they share
the time interval of the CAS operation itself. Hence, all the threads that fail to
CAS on the tail-node of the queue may be inserted into the same basket.

2. The Baskets Queue 6

x
x
x
x
x
x
x
x
x
x
x

Head

x
x
x
x
x

x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x

Tail

a basket
an item

Fig. 2.1: The abstract Baskets Queue

In order to enqueue, just as in MS-Queue, a thread first tries to link the
new node to the last node. If it failed to do so, then another thread has already
succeeded. Thus it tries to insert the new node into the new basket that was
created by the winning thread (see Fig. 2.2). To dequeue a node, a thread first
reads the head of the queue to obtain the oldest basket. It may then dequeue
any node in the oldest basket.

2.2 The Algorithm

The implementation of the Baskets Queue I present here is based on Michael
and Scott’s MS-queue. The algorithm maintains a linked list of nodes logically
divided into baskets (see Fig. 2.3). Although, in the implementation the baskets
have a stack-like behavior, any concurrent pool object that supports the add
and the remove methods, can serve as a basket. The advantage of such objects
is that they can deliver more scalability than the stack-like baskets.

Since CAS operations are employed in the algorithm, ABA issues arise [10,
20]. In Section 2.4, the enqueue and dequeue methods are described ignoring
ABA issues. The tagging mechanism that was added to overcome the ABA
problem is explained in Section 2.5. The code in this section includes this
tagging mechanism.

2.3 Data Structures

Just as in the MS-queue, the queue is implemented as a linked list of nodes with
head and tail pointers (see figure 2.4). The tail points either to a node in
the last basket, or in the second to last basket. In contrast to the MS-queue,
pointer marking [14] is used to logically delete nodes. The queue’s head always
points to a dummy node, which might be followed by a sequence of logically
deleted (marked) nodes.

2. The Baskets Queue 7

C

A

B

C

A

B

B

A

Tail

B

AC

C

D

4

1

3

2

D

Tail

TailTail

D

x
x
x
x
x
x

x
x
x
x

xxxxx

Fig. 2.2: (1) Each thread checks that the tail-node’s next field is null, and tries to
atomically change it to point to its new node’s address. (2) Thread A succeeds
to enqueue the node. Threads B and C fail on the same CAS operation,
hence both of them will retry to insert into the basket. (3) Thread B was
the first to succeed to enqueue, at the same time thread D calls the enqueue
method, and finishes successfully to enqueue onto the tail. (4) thread C
finishes successfully.

2.4 The Baskets Queue methods

The FIFO queue supports two methods: enqueue (figure 2.5) and dequeue
(figure 2.6). The enqueue method inserts a value into the queue and the dequeue
method deletes the oldest value from the queue.

To enqueue a new node into the list, the thread first reads the current tail.
If the tail is the last node (E07) it tries to atomically link the new node to
the last node (E09). If the CAS operation succeeded the node was enqueued
successfully, and the thread tries to point the queue’s tail to the new node
(E10), and then returns. However, if the thread failed to atomically swap the
Null value, it means that the thread overlaps in time with the thread that
succeeded to CAS (and possibly with more failed threads). Thus, the thread
tries to insert the new node to the basket (E12-E18). It re-reads the next pointer
that points to the first node in the basket, and as long as no node in the basket
has been deleted (E13), it tries to insert the node at the same list position. If
the tail did not point to the last node, the last node is found (E20-E21), and
the queue’s tail is fixed.

To prevent a late enqueuer from inserting its new node behind the queue’s
head, a node is dequeued by setting the deleted bit of its pointer so that a new
node can only be inserted adjacent to another unmarked node. As the queue’s
head is only required as a hint to the next unmarked node, the lazy update
approach of Tsigas and Zhang [21] can be used to reduce the number of CAS
operations needed to update the head.

To dequeue a node, a thread reads the current state of the queue (D01-D04)
and re-checks it for consistency (D05). If the head and tail of the list point to

2. The Baskets Queue 8

xxxx
xxxx
xxxx
xxxx
xxxx

xxxxx
xxxxx
xxxxx
xxxxxxxxx

xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx
xxxx
xxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxx

xx
xx

xx
xx
xx

xx
xx
xx

xx
xx

x
x

x
x

xxxx
xxxx
xxxx
xxxx
xxxx

xx

Head Tail

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx

1 2 3 4

Fig. 2.3: Linked list of nodes logically divided into four different baskets

struct pointer_t {

<ptr, deleted, tag>: <node_t *, boolean, unsigned integer>

};

struct node_t { struct queue_t {

data_type value; pointer_t tail

pointer_t next; pointer_t head

}; };

void init_queue(queue_t* q)

I01: node_t* nd = new_node() # Allocate a new node

I02: nd->next = <null, 0, 0> # next points to null with tag 0

I03: q->tail = <nd, 0, 0>; # tail points to nd with tag 0

I04: q->head = <nd, 0, 0>; # head points to nd with tag 0

Fig. 2.4: Types, structures and initialization

the same node (D06), then either the list is empty (D07) or the tail lags. In
the latter case, the last node is found (D09-D10) and the tail is updated(D11).
If the head and the tail point to different nodes, then the algorithm searches
for the first unmarked node between the head and the tail (D15-D18). If a
non-deleted node is found, its value is first read (D24) before trying to logically
delete it (D25). If the deletion succeeded the dequeue is completed. Before
returning, if the deleted node is far enough from the head (D26), the free chain
method is performed (D27). If while searching for a non-deleted node the thread
reached the tail (D21), the queue’s head is updated (D22). See Fig. 2.4 for an
illustration.

The free chain procedure (figure 2.8)tries to update the queue’s head
(F01). If it successful, it is safe to reclaim the deleted nodes between the old
and the new head (F02-F05).

2.5 Solving the ABA problem

In order to solve the ABA problem I use the standard tagging-mechanism ap-
proach [10, 11]. The low bits of the address pointer are used as ”tag” bits. The
tag bits are manipulated atomically with the pointer in each CAS operation.

2. The Baskets Queue 9

void enqueue(queue_t* q, data_type val)

E01: nd = new_node()

E02: nd->value = val

E03: repeat:

E04: tail = Q->tail

E05: next = tail.ptr->next

E06: if (tail == Q->tail)):

E07: if (next.ptr == NULL):

E08: nd->next = <NULL, 0, tail.tag+1>

E09: if CAS(&tail.ptr->next, next, <nd, 0, tail.tag>):

E10: CAS(&Q->tail, tail, <nd, 0, tail.tag+1>

E11: return True

E12: next = tail.ptr->next

E13: while((next.tag==tail.tag) and (not next.deleted)):

E14: backoff_scheme()

E15: nd->next = next

E16: if CAS(&tail.ptr->next, next, <nd, 0, tail.tag>):

E17: return True

E18: next = tail.ptr->next;

E19: else:

E20: while ((next.ptr->next.ptr != NULL) and (Q->tail==tail)):

E21: next = next.ptr->next;

E22: CAS(&Q->tail, tail, <next.ptr, 0, tail.tag+1>)

Fig. 2.5: The enqueue method

Thus, the next CAS operations on the pointer will fail even though the address
is the same, as the tag value is different.

When the queue is initialized the tags of the head and tail are initialized
to zero. The tag of the next pointer of the dummy node is initialized to 1. As
can be seen in the code, I apply the following tag manipulation rules:

1. When applying a CAS operation on the head and on the tail, the tag is
incremented by 1 (lines E10, E22 and D11).

2. When a new node is linked to the tail of the queue, its next pointer tag
is set to be one greater then the tail’s tag (line E08).

3. When a new node is inserted into a basket, its next pointer tag is set to
be the be same as the node it is linked to (line E15).

2. The Baskets Queue 10

const MAX_HOPS = 3 # constant

data_type dequeue(queue_t* Q)

D01: repeat

D02: head = Q->head

D03: tail = Q->tail

D04: next = head.ptr->next

D05: if (head == Q->head):

D06: if (head.ptr == tail.ptr)

D07: if (next.ptr == NULL):

D08: return ’empty’

D09: while ((next.ptr->next.ptr != NULL) and (Q->tail==tail)):

D10: next = next.ptr->next;

D11: CAS(&Q->tail, tail, <next.ptr, 0, tail.tag+1)

D12: else:

D13: iter = head

D14: hops = 0

D15: while ((next.deleted and iter.ptr != tail.ptr) and (Q->head==head)):

D16: iter = next

D17: next = iter.ptr->next

D18: hops++

D19: if (Q->head != head):

D20: continue;

D21: elif (iter.ptr == tail.ptr):

D22: free_chain(Q, head, iter)

D23: else:

D24: value = next.ptr->value

D25: if CAS(&iter.ptr->next, next, <next.ptr, 1, next.tag>):

D26: if (hops >= MAX_HOPS):

D27: free_chain(Q, head, next)

D28: return value

D29: backoff-scheme()

Fig. 2.6: The dequeue method

2. The Baskets Queue 11

TailHead TailHead

TailHead TailHead

1 2

3 4

in list

marked

freed

M

M

MM

MMMMMM

M DD

D

M

D dummy

D

Fig. 2.7: (1) three nodes are logically deleted. (2) the first non-deleted node is deleted
(3) the head is advanced (4) the chain of deleted nodes can be reclaimed

void free_chain(queue_t* q, pointer_t head, pointer_t new_head)

F01: if CAS(&Q->head, head, <new_head.ptr, 0, head.tag+1>):

F02: while (head.ptr != new_head.ptr):

F03: next = head.ptr->next

F04: reclaim_node(head.ptr)

F05: head = next

Fig. 2.8: The free chain procedure

3. CORRECTNESS

This section contains a proof that our algorithm has the desired properties of a
lock-free linearizable FIFO-queue.

Initially I will prove that the Baskets Queue algorithm has the correct set
semantics regardless of the order in which the nodes are dequeued. Then I will
show that the algorithm is linearizable to the abstract sequential queue. Finally,
I will prove that the algorithm is lock-free.

3.1 Correct Set Semantics

Definition 10. A queue data structure has correct set semantics [3] if its meth-
ods meet the following requirements:

• If a dequeue method returns an item i, then i was previously inserted by
an enqueue method.

• If an enqueue method inserted the item i into the queue, then there is at
most one dequeue method that returns it.

Similarly to the MS-queue correctness proof, I will show that the algorithm
maintains the following properties by induction on the states of execution:

1. The queue is a connected list of nodes.

2. The list consists of a sequence of marked nodes followed by a sequence of
unmarked nodes.

3. Nodes are marked (logically-deleted) from the start of the unmarked nodes’
sequence.

4. New nodes are inserted anywhere after the marked nodes’ sequence.

5. Nodes are deleted (freed) only after they are marked (logically deleted)
and removed from the list.

6. The tail always points to a node in the list.

7. The head always points to a node in the marked nodes’ sequence.

These properties are fulfilled by the initial queue.

Property 1. The queue is a connected list of nodes.

Proof. The next pointers of the nodes in the list are changed only by enqueue
method calls. When enqueuing into a basket, the next pointer is atomically set
to point to the new node (E16), which already points to the next node (E15).

3. Correctness 13

When the new node is added to the end of the list (E09), its next pointer is set
to NULL (E08).

From property 5, a node is deleted (freed) only after it is removed from the
list by advancing the head forward down the list.

Property 2. The list consists of a sequence of marked nodes followed by a
sequence of unmarked nodes.

Proof. By property 1, the list of nodes is connected. By property 3, nodes are
marked only at the beginning of the unmarked nodes’ sequence. Finally, by
property 4, new nodes are inserted only to the unmarked nodes’s sequence.

Property 3. Nodes are marked (logically-deleted) from the start of the un-
marked nodes’ sequence.

Proof. In order to find an unmarked node, the thread searches for the first
unmarked node (D15-D18). Since the head always points to a node in the
marked nodes’ sequence (property 7), the first node to be found is the first node
in the unmarked sequence.

Property 4. New nodes are inserted anywhere after the marked nodes’ se-
quence.

Proof. Since the tail always points to a node in the list (property 6), the last
node in the linked list can be found (E20-E21). The list is always connected
(property 1), thus a node with a NULL pointer can only be the last node in the
list. An enqueue method that adds a node to the end of the list, atomically
verifies that the new node is inserted after the last node (E07,E09).

An enqueue method that enqueues a node into a basket, ensures the pointer
is not marked (E13), thus it can only be inserted adjacent to another unmarked
node.

Property 5. Nodes are deleted (freed) only after they are marked (logically
deleted) and removed from the list.

Proof. Nodes are deleted (F04) only after they are removed (F01) by atomically
changing the head. The head always points to a marked node (property 7). By
property 2, all the removed nodes between the old and the new head are marked
nodes.

Property 6. The tail always points to a node in the list.

Proof. On the one hand, the head of the queue is changed only by the calls to
the free chain procedure in lines D22 and D27. The while statement condition
in line D15 ensures that iter will never point to a node beyond the tail. The
call to free chain in line D22 points the head to the tail. The free chain
procedure in line D27 is called only if iter points to an item strictly before the
tail, therefore the queues’s head can never point beyond the tail, and items
pointed by the tail are never freed.

On the other hand, the tail only advances in the direction of the next
pointers.

Property 7. The head always points to a node in the marked nodes’ sequence.

3. Correctness 14

Proof. The while-loop ensures that the local variable ”iter” points either to
the queue’s head (D13) or to another marked node (D15). Thus by calling the
method free chain (D20), the head will be pointed to a another marked node.
In line D25, a call to the method free chain (to point head to ”next”) is made
only if ”next” was successfully marked (D23).

Theorem 1. The queue has correct set semantics.

Proof. By property 1, the queue is a connected list of nodes. Therefore if a
dequeue method call returns an item i, then i was previously inserted by an
enqueue. The dequeue method returns a value only if it successfully marked
the pointer to its item(line D25). Therefore, an item can be dequeued only
once.

3.2 Linearizability of the algorithm

If by ordering the operations in the order of their linearization points the queue
behaves like the abstract sequential queue, then the queue is linearizable to the
abstract FIFO-queue.

Definition 11. The linearization point of a successful dequeue method (one
that returned a value) is the successful pointer marking at line D23.

Definition 12. The linearization point of an unsuccessful dequeue method (one
that returned ”empty”) is when reading the dummy node’s next null pointer at
line D04.

Definition 13. The linearization points of the enqueue method calls of a basket
are set inside the basket’s shared time interval in the order of their respective
dequeues. In other words, the linearization points of the enqueues are deter-
mined only once the items are dequeued.

Lemma 1. The enqueue method calls of the same basket overlap in time.

Proof. An enqueue method tries to insert a node into a basket only if it failed to
CAS on the tail of the list (E09). Before trying to CAS, the enqueue method
checks that the next pointer of the tail-node is null. Thus, all the failed enqueue
method calls overlap the time interval that starts at some point when the next
pointer of the tail-node is null, and ends when it points to a new node. The
thread that succeeded to CAS overlaps the same interval too.

Lemma 2. The baskets are ordered according to the order of their respective
time intervals.

Proof. A basket is created by a successful enqueue method on the tail of the
queue. The enqueue method calls that failed to enqueue, retry to insert their
nodes at the same list position. Therefore, the first node of a basket is next to
the last node of the previous basket, and the last node of a basket is the winner
of the CAS operation.

Moreever, the order of nodes in the connected list is not changed by dequeues.

Lemma 3. The linearization points of the dequeue method calls of a basket
come after the basket’s shared time interval.

3. Correctness 15

Proof. In order for a dequeue method to complete, the node to be dequeued
must be in the list. A basket’s first node is linked into the list only after the
CAS operation on the tail is completed. The completion of this CAS operation
is also the end of the shared time interval of the basket. Thus nodes can be
marked only after the basket’s time interval.

Lemma 4. The nodes of a basket are dequeued before the nodes of later (younger)
baskets.

Proof. This follows from property 3 and lemma 2.

Lemma 5. The linearization point of a dequeue method call that returned
”empty” comes exactly after an equal number of successful enqueue and suc-
cessful dequeue method calls.

Proof. If the next pointer of the dummy node is null then all the enqueued
nodes had been removed from the list. Since nodes are removed from the list
only after they are marked, the linearization point of an ”empty” dequeue comes
after equal number of successful enqueue and successful dequeue linearization
points.

Theorem 2. The FIFO-queue is linearizable to a sequential FIFO queue.

Proof. Ignoring for a moment dequeues that return ”empty”, from lemmas 2
and 4, the order in which baskets are dequeued is identical to the order in which
baskets are enqueued. From lemma 3 the enqueue methods of a basket preceed
its dequeues. Lemma 1 guarantees that the construction of definition 13 is
possible. Thus the order of the enqueue method calls of a basket is identical to
the order of its dequeue method calls, and the queue is linearizable.

From lemma 5 the queue is linearizable also with respect to dequeue method
calls that returned ”empty”.

3.3 Lock-freedom

This section contains the proof that the concurrent implementation is lock-free.
In other words, if a thread does not complete a method call in a finite number of
steps, it is because other other threads infinitely succeed in completing method
calls.

Lemma 6. If a thread failed on one of the CAS operations in lines E09, E16
or D25, then another thread has succeeded in one of those CAS operations.

Proof. The next pointers of the list’s nodes are changed only by the CAS oper-
ations in the lines E09, E16 and D25. From the semantics of the CAS operation,
one thread must succeed.

Lemma 7. If one of the CAS operation in lines E09, E16 or D25 is executed
infinitely often, an infinite number of enqueue method calls will also have been
successfully completed.

3. Correctness 16

Proof. From lemma 6, one of these CAS operation is successfully executed in-
finitely often. If threads successfully execute the CAS operations is lines E09
and E16 infinitely often, then there is an infinite number of completed enqueues
as well. By theorem 1, an item can be dequeued only once. Thus, if the CAS op-
eration in line D25 is successfully executed infinity often, then there are infinite
number of completed enqueues.

Lemma 8. If there is only a finite number of successful CAS operations at
lines E09 and E16, then the queue’s tail and head may be updated only a
finite number of times.

Proof. From the lemma assumption, only a finite number of nodes is added to
the list. From properties 1, 6 and 7, the last node is reachable within a finite
number of pointer traversals from the head and from the tail.

In each update of the head and tail (lines D11, D22, D27 and lines E10,
E22), the head and the tail are changed to a node that is closer to the last
node.

Thus after a finite number of updates the head and the tail will point to
the last node.

Lemma 9. If an enqueue method call does not terminate its execution in a
finite number of steps, then other method calls complete infinitely often.

Proof. Assume on the contrary, that an enqueue method call does not termi-
nate, and only a finite number of concurrent enqueue and dequeue method calls
succeed.

An enqueue method call may infinitely loop in the while-loop in lines E20-
E21, E13-E18 or in the main loop (lines E03-E22).

By properties 1 and 6, the while-loop in lines (E20-E21) will eventually
terminate by reaching the last node (or sooner, if the tail was changed).

If the enqueue method call infinitely loops in the while loop E13-E18 then the
CAS operation in line E16 is being executed an infinite number of times. Thus,
by lemma 7 there is an infinite number of successful enqueues - a contradiction.

Therefore, the enqueue method infinitely loops in the main loop. From
lemma 7, the enqueue method reaches the CAS statements at line E09 only a fi-
nite number of times (otherwise there would be an infinite number of enqueues).
Thus one of the conditions in lines E06 and E07 fails infinitely often.

• If the condition in line E06 fails infinitely often, then other threads update
the tail infinitely often.

• If the condition in line E07 fails infinitely often, then the enqueue method
will try to update the tail infinitely often, and whenever it fails to update
the tail, it is because the tail was successfully updated by another
thread.

Thus if one of the conditions fails infinitely often, then the tail is updated
infinitely often. In contradiction to lemma 8.

Lemma 10. If a dequeue method does not terminate in a finite number of
steps, then other method calls succeed infinitely often.

3. Correctness 17

Proof. Assume the contrary, that a dequeue method does not terminate, and
only a finite number of concurrent enqueue and dequeue method calls succeed.
A dequeue method may infinitely loop in the while-loop in lines D09-D10, D15-
D18, in the free chain method’s loop or in the main loop (lines E03-E22).

By properties 1 and 6, the while-loop in lines (D09-D10) will eventually
terminate by reaching the last node (or sooner, if the tail was changed).

By properties 1, 6 and 7, the tail is always reachable from the head, thus
the while-loop in lines (D15-D18) will eventually terminate by reaching the node
pointed to by tail (or sooner, if the head was changed).

By property 1, the while-loop of the free chain method terminates as only
the thread that changed the head frees the chain of nodes.

Therefore, the dequeue method infinitely loops in the main loop. The ex-
ecution does not reach the statement in line D08 (otherwise the loop would
terminate). Thus one of the conditions in lines D05, D06 or D07 fails infinitely
often.

• If the condition in line D05 fails infinitely often, then other threads up-
date the head infinitely often.

• If the condition in line D06 fails infinitely often, then the process will
execute one of the if statement branches in lines D19, D21 or D23 infinitely
often.

• If the branch of line D19 is executed infinitely often then the head is
updated infinitely often.

• If the branch of line D21 is executed infinitely often then the thread
will try to update the head infinitely often, and whenever it fails to
update the head, it is because the head was successfully updated by
another thread.

• If the branch of line D23 is executed infinitely often, then the thread
will execute the CAS operation in line D25 infinitely often. In con-
tradiction to lemma 7.

• If the condition in line D07 fails infinitely often, then the thread will will
try to update the tail infinitely often, and whenever it fails to update the
tail, it is because the tail was successfully updated by another thread.

Thus if any one of the conditions fails infinitely often, then the tail or the
head are infinitely being updated. This is in contradiction to lemma 8, and as
well the dequeue method call can not infinitely loop in the main loop.

Theorem 3. The FIFO-queue is lock-free.

Proof. By lemma 9 if an enqueue method call does not terminate in a finite
number of steps then other method calls succeed infinitely often. By lemma 10
if a dequeue method call does not terminate in a finite number of steps then
other method calls succeed infinitely often.

4. EVALUATION

I compared the new lock-free queue algorithm to the lock-free MS-queue of
Michael and Scott [10], and to the Optimistic-Queue by Ladan-Mozes and Shavit
[6]. The algorithms were compiled in the C programming language with Sun’s
”CC” compiler 5.8 with the flags ”-XO3 -xarch=v8plusa”. The different bench-
marks were executed on a 16 processor Sun FireTM 6800 running the SolarisTM

9 operating system.

4.1 The Benchmarked Algorithms

The Baskets Queue algorithm is compared to the lock-free queue of Michael
and Scott [10], and to the Optimistic Queue of Ladan-Mozes and Shavit [6].
To expose the possible effects of the use of logical deletions, a variation of the
MS-Queue with logical deletions was added as a control. The set of compared
queue implementations was:

1. Baskets Queue - the new algorithm implementation.

2. Optimistic Queue - the pre-backoff version of the Optimistic FIFO-queue.

3. MS-queue - the lock-free version of the Michael and Scott’s queue.

4. MS-queue lazy head - This is a variation of MS-Queue where dequeues are
performed by logically deleting the dequeued node. Therefore, following
Tsigas and Zhang’s technique [21], the queue’s head may be updated only
once for several dequeues.

4.2 The benchmarks

The benchmarks used are those used by Ladan and Shavit [6] and Michael and
Scott [10].

• 50% Enqueues: each thread chooses uniformly at random whether to per-
form an enqueue or a dequeue, creating a random pattern of 50% enqueue
and 50% dequeue method calls.

• Enqueue-Dequeue Pairs: each thread alternately performs an tt enqueue
or a dequeue method.

• Grouped method calls: each thread picks a random number between 1
and 16, and performs this number of enqueues or dequeues. The thread
performs enqueues and dequeues alternately as in the Enqueue-Dequeue
Pairs benchmark.

The total number of enqueue and dequeue method calls is not changed, they
are only executed in a different order.

4. Evaluation 19

� � � � � �� �� �� ��
sessecorpforebmun

���������������������������������
)
S

m(
e

mi
T

��� 	
��	�	 �	
���������������� ������ !������ !����� "#$% &�#'(#�)��� �����

Fig. 4.1: The 50 % enqueues benchmark

4.3 The experiments

The benchmarks measure the total time required to perform one million method
calls as a function of the number of processes. For each benchmark and algo-
rithm I chose the exponential backoff delays that optimize the maximal latency
(the maximal time required to complete an method).

To counteract transient startup effects, the processes’ start time is synchro-
nized (i.e: no thread started before all others finished their initialization phase).

4.4 Empirical results

Figures 4.1, 4.2 and 4.3 show the results of the four different benchmarks. It
can be seen that high levels of concurrency have only moderate effects on the
performance of the Baskets Queue. The Baskets Queue is up to 25% faster than
the other algorithms. This can be explained by the load on the tail of all the
data-structures but the Baskets Queue, in the Baskets Queue the contention
on the tail is distributed among several baskets. However, at lower concur-
rency levels, the optimistic approach is superior because the basket-mechanism
is triggered only upon contention.

When I optimized the exponential backoff delays of the algorithms for each

4. Evaluation 20

� � � � � �� �� �� ��
sessecorpforebmun

���������������������������������
)
S

m(
e

mi
T

���	
	
��
�	
	
 ���� �
����������������� �� � !"#�� � !"#�� � $%&' (%)*%�+ �� �� �

Fig. 4.2: The Enqueue-Dequeue pairs benchmark

benchmark, I noticed that for the Basket Queue the optimal backoff delays
of all three benchmark is identical. In contrast, for the other algorithms, no
single combination of backoff-delays was optimal for all benchmarks. This is
due to the fact that the exponential backoff is used only as a secondary backoff
scheme when inserting into the baskets, thus it has only a minor effect on the
performance.

To further test the robustness of the algorithm to exponential backoff delays,
the same benchmark test was conducted without using exponential backoff de-
lays. As seen in figures 4.4, 4.5 and 4.6, in this setting the Baskets Queue signif-
icantly outperforms the other algorithms. This robustness can be explained by
the fact that the basket-mechanism assumes the role of the backoff-mechanism
by distributing concurrent enqueue method calls to different baskets.

To gauge the effectiveness of the basket-mechanism on the 16 processor ma-
chine, snapshots of the list of baskets were taken. Figure 4.7 shows a typical
snapshot of the Baskets Queue on the 50% enqueues benchmarks. The basket
sizes vary from only 1 to 3 nodes. In the average case, an enqueue method will
succeed to enqueue after at most 3 failed CAS operations. The baskets sizes are
smaller than 8 nodes as one would expect them to be, because the elements are
inserted into the baskets one by one. This unnecessary synchronization on the
nodes of the same basket imposes a delay on the last nodes to be inserted.

4. Evaluation 21

� � � � � �� �� �� ��
sessecorpforebmun

���������
������������������������

)
S

m(
e

mi
T

���	
��
�������� ���� ������������� �!��" #$%$%&'(#$%$%&'(#$%$%)*+, -%*./*!0%�! #$%$%

Fig. 4.3: The grouped method benchmark

In addition to the robustness to exponential backoff delays, this snapshot
confirms that when in use, the backoff-mechanism inside each basket needs only
to synchronize at most 3 concurrent enqueues, if any. Therefore, it has only a
minor effect on the overall performance. I believe that for machines where ex-
ponential backoff techniques are crucial for performance, this robustness makes
the Baskets Queue algorithm a natural solution as an out-of-the-box queue, to
be used without the requirement of fine tuning.

4. Evaluation 22

� � � � � �� �� �� ��
sessecorpforebmun

�������������������
)
S

m(
e

mi
T

��	
��

� �
����������������� ����� !"����� !"����� #$%& '�$()$�*��� �����

Fig. 4.4: The 50% enqueues benchmark without backoff

4. Evaluation 23

� � � � � �� �� �� ��
sessecorpforebmun

�������������������
)
S

m(
e

mi
T

��	
�
���	
�
� ����� ������������������� � ! !"#$� ! !"#$� ! ! %&'()!&*+&�,!�� � ! !

Fig. 4.5: The Enqueue-Dequeue pairs benchmark without backoff

4. Evaluation 24

� � � � � �� �� �� ��
sessecorpforebmun

�������������������
)
S

m(
e

mi
T

��	
�� �������	�� ���� ������������ ! "� # $%&%&'()$%&%&'()$%&%& *+,- .&+/0+"1&�" $%&%&

Fig. 4.6: The Grouped method calls benchmark without backoff

4. Evaluation 25

x

Head

x
x
x
x

Fig. 4.7: A typical snapshot of the queue (16 processes)

5. CONCLUSIONS

5.1 Results

In this thesis I explored new techniques to improve the scalability of threads
synchronization. Before this work there was no practical concurrent FIFO queue
for which simultaneous enqueue method calls could be performed in parallel.
The newly designed queue outperforms the best known concurrent queues in
the literature in various benchmarks, even at low levels of concurrency.

Moreover, by integrating the basket-mechanism as the back-off mechanism,
the time usually spent on backing-off is utilized by failed method calls to insert
their items into the baskets, allowing enqueues to complete sooner. This leads
to a queue algorithm that unlike all former concurrent queue algorithms requires
virtually no tuning of the backoff mechanisms to reduce contention, making it
an attractive out-of-the-box queue.

5.2 Future Work

Although the nodes of the same basket need not be ordered, they are inserted
and removed in a stack-like manner, one by one. This unnecessary synchroniza-
tion inside each basket limits the scalability of the algorithm. It is a subject for
further research to determine if it feasible to exploit a weaker order semantics
on insertion and removes to make the queue more scalable.

BIBLIOGRAPHY

[1] Cormen, T., Leiserson, C., Rivest, R., and Stein, C. Introduction
to Algorithms, second edition ed. MIT Press, Cambridge, MA, 2001.

[2] Gottlieb, A., Lubachevsky, B. D., and Rudolph, L. Basic tech-
niques for the efficient coordination of very large numbers of cooperating
sequential processors. ACM Trans. Program. Lang. Syst. 5, 2 (1983), 164–
189.

[3] Hendler, D., Yerushalmi, L., and Shavit, N. A scalable lock-free
stack algorithm. Tech. Rep. TR-2004-128, Sun Microsystems Laboratories,
2004.

[4] Herlihy, M., and Wing, J. Linearizability: A correctness condition for
concurrent objects. ACM Transactions on Programming Languages and
Systems 12, 3 (July 1990), 463–492.

[5] Hwang, K., and Briggs, F. A. Computer Architecture and Parallel
Processing. McGraw-Hill, Inc., 1990.

[6] Ladan-Mozes, E., and Shavit, N. An optimistic approach to lock-
free fifo queues. In Proceedings of Distributed computing (2004), Springer,
pp. 117–131.

[7] Lamport, L. Specifying concurrent program modules. ACM Transactions
on Programming Languages and Systems 5, 2 (1983), 190–222.

[8] Lea, D. The java concurrency package (JSR-166).
http://gee.cs.oswego.edu/dl/concurrency-interest/index.html.

[9] Mellor-Crummey, J. M. Concurrent queues: Practical fetch-and-φ algo-
rithms. Tech. Rep. Technical Report 229, University of Rochester, Novem-
ber 1987.

[10] Michael, M., and Scott, M. Nonblocking algorithms and preemption-
safe locking on multiprogrammed shared - memory multiprocessors. Jour-
nal of Parallel and Distributed Computing 51, 1 (1998), 1–26.

[11] Moir, M. Practical implementations of non-blocking synchronization
primitives. In Proceedings of the 16th Annual ACM Symposium on Princi-
ples of Distributed Computing (1997), pp. 219–228.

[12] Moir, M., Nussbaum, D., Shalev, O., and Shavit, N. Using elim-
ination to implement scalable and lock-free fifo queues. In SPAA ’05:
Proceedings of the seventeenth annual ACM symposium on Parallelism in
algorithms and architectures (New York, NY, USA, 2005), ACM Press,
pp. 253–262.

Bibliography 28

[13] Prakash, S., Lee, Y.-H., and Johnson, T. Non-blocking algorithms for
concurrent data structures. Tech. Rep. 91–002, Department of Information
Sciences, University of Florida, 1991.

[14] Prakash, S., Lee, Y.-H., and Johnson, T. A non-blocking algorithm
for shared queues using compare-and-swap. IEEE Transactions on Com-
puters 43, 5 (1994), 548–559.

[15] Shavit, N., and Touitou, D. Elimination trees and the construction of
pools and stacks. In ACM Symposium on Parallel Algorithms and Archi-
tectures (1995), pp. 54–63.

[16] Sites, R. Operating Systems and Computer Architecture, In H. Stone,
editor, Introduction to Computer Architecture, 2nd edition, Chapter 12.
Science Research Associates, 1980.

[17] Stone, H. S. High-performance computer architecture. Addison-Wesley
Longman Publishing Co., Inc., 1987.

[18] Stone, J. A simple and correct shared-queue algorithm using compare-
and-swap. In Proceedings of the 1990 conference on Supercomputing (1990),
IEEE Computer Society Press, pp. 495–504.

[19] Stone, J. M. A nonblocking compare-and-swap algorithm for a shared cir-
cular queue. In Parallel and Distributed Computing in Engineering Systems
(1992), Elsevier Science B.V., pp. 147–152.

[20] Treiber, R. K. Systems programming: Coping with parallelism. Tech.
Rep. RJ 5118, IBM Almaden Research Center, April 1986.

[21] Tsigas, P., and Zhang, Y. A simple, fast and scalable non-blocking
concurrent fifo queue for shared memory multiprocessor systems. In Pro-
ceedings of the thirteenth annual ACM symposium on Parallel algorithms
and architectures (2001), ACM Press, pp. 134–143.

[22] Valois, J. Implementing lock-free queues. In Proceedings of the Seventh
International Conference on Parallel and Distributed Computing Systems
(1994), pp. 64–69.

[23] Valois, J. D. Lock-free linked lists using compare-and-swap. In Sympo-
sium on Principles of Distributed Computing (1995), pp. 214–222.

