
NUMA-Aware Reader-Writer Locks

Irina Calciu
Brown University

irina@cs.brown.edu

Dave Dice
Oracle Labs

dave.dice@oracle.com

Yossi Lev
Oracle Labs

yossi.lev@oracle.com

Victor Luchangco
Oracle Labs

victor.luchangco@oracle.com

Virendra J. Marathe
Oracle Labs

virendra.marathe@oracle.com

Nir Shavit
MIT

shanir@csail.mit.edu

Abstract

Non-Uniform Memory Access (NUMA) architectures are gain-
ing importance in mainstream computing systems due to the rapid
growth of multi-core multi-chip machines. Extracting the best pos-
sible performance from these new machines will require us to re-
visit the design of the concurrent algorithms and synchronization
primitives which form the building blocks of many of today’s appli-
cations. This paper revisits one such critical synchronization prim-
itive – the reader-writer lock.

We present what is, to the best of our knowledge, the first fam-
ily of reader-writer lock algorithms tailored to NUMA architec-
tures. We present several variations which trade fairness between
readers and writers for higher concurrency among readers and bet-
ter back-to-back batching of writers from the same NUMA node.
Our algorithms leverage the lock cohorting technique to manage
synchronization between writers in a NUMA-friendly fashion, bi-
nary flags to coordinate readers and writers, and simple distributed
reader counter implementations to enable NUMA-friendly concur-
rency among readers. The end result is a collection of surprisingly
simple NUMA-aware algorithms that outperform the state-of-the-
art reader-writer locks by up to a factor of 10 in our microbench-
mark experiments. To evaluate our algorithms in a realistic setting
we also present performance results of the kccachetest benchmark
of the Kyoto-Cabinet distribution, an open-source database which
makes heavy use of pthread reader-writer locks. Our locks boost
the performance of kccachetest by up to 40% over the best prior
alternatives.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming

General Terms Algorithms, Design, Performance

Keywords NUMA, hierarchical locks, mutual exclusion, reader-
writer locks

1. Introduction

As microprocessor vendors aggressively pursue the production of
bigger multi-core multi-chip systems (Intel’s Nehalem-based and
Oracle’s Niagara-based systems are typical examples), the com-
puting industry is witnessing a shift toward distributed and cache-

coherent Non-Uniform Memory Access (NUMA) architectures. 1

These systems contain multiple nodes where each node has locally
attached memory, a local cache and multiple processing cores. Such
systems present a uniform programming model where all memory
is globally visible and cache-coherent. The set of cache-coherent
communications channels between nodes is referred to collectively
as the interconnect. These inter-node links normally suffer from
higher latency and lower bandwidth compared to the intra-node
channels. To decrease latency and to conserve interconnect band-
width, NUMA-aware policies encourage intra-node communica-
tion over inter-node communication.

Creating efficient software for NUMA systems is challenging
because such systems present a naive uniform “flat” model of the
relationship between processors and memory, hiding the actual un-
derlying topology from the programmer. The programmer must
study architecture manuals and use special system-dependent li-
brary functions to exploit the system topology. NUMA-oblivious
multithreaded programs may suffer performance problems arising
from long access latencies caused by inter-node coherence traffic
and from interconnect bandwidth limits. Furthermore, inter-node
interconnect bandwidth is a shared resource so coherence traffic
generated by one thread can impede the performance of other un-
related threads because of queueing delays and channel contention.
Concurrent data structures and synchronization constructs at the
core of modern multithreaded applications must be carefully de-
signed to adapt to the underlying NUMA architectures. One key
synchronization construct is the reader-writer (RW) lock.

A RW lock relaxes the central property of traditional mutual ex-
clusion (mutex) locks by allowing multiple threads to hold the lock
simultaneously in read mode. A thread may also acquire the lock in
write mode for exclusive access. RW locks are used in a wide range
of settings including operating system kernels, databases, high-end
scientific computing applications and software transactional mem-
ory implementations [6].

RW locks have been studied extensively for several decades [1,
2, 11, 13–16], with proposals ranging from simple counter- or
semaphore-based solutions [2], to solutions leveraging centralized
wait-queues [14, 16], to solutions that use more sophisticated data
structures such as Scalable Non-Zero Indicators (SNZI) [15]. Of
these, all but the SNZI-based solutions rely on centralized struc-
tures to coordinate threads, and thus encounter scalability im-
pediments [15]. The SNZI-based algorithms keep track of read-
ers – threads acquiring the RW lock in read mode – with each
reader arriving at a leaf in the “SNZI tree”. Readers can be made
NUMA-aware by partitioning the leaves of the SNZI-tree among
the NUMA nodes, with threads arriving at SNZI leaves associated
with their node. Writers, however, remain NUMA-oblivious, which
can impair scalability.

1 We use the term NUMA broadly to include Non-Uniform Communication
Architecture (NUCA) [17] machines as well.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
PPoPP’13, February 23–27, 2013, Shenzhen, China.
Copyright © 2013 ACM 978-1-4503-1922-5/13/02...$15.00.

157

Hsieh and Weihl [11] and Vyukov [20] independently suggested
a simple distributed2 approach to building scalable RW locks. Each
distributed RW lock contains N RW locks where N is the number
of processors in the system. Each reader is mapped to a single
RW lock, and must acquire that lock in read mode in order to
execute its critical section. A writer must acquire all the underlying
RW locks in write mode to execute its critical section. Deadlocks
between writers are avoided by forcing a specific locking order.
The approach can be made NUMA-aware by restricting N to the
number of NUMA nodes in the system, and mapping each reader to
the lock dedicated to its node. This variant algorithm which we call
DV (representing the initials of Vyukov), is partially NUMA-aware,
just like the SNZI-based RW locks. Absent any writers, readers
on different nodes can obtain and release read permission without
generating any inter-node write coherence traffic. However, every
writer incurs the overhead of acquiring write permission for the RW
lock of every node, potentially generating significant coherence
traffic. Thus, the performance of DV plummets with increased
writer activity. Also, because of the canonical locking order used
to avoid deadlock, readers on nodes that appear late in the order
may enjoy an unfair performance advantage over readers running
on nodes that appear earlier.

In this paper we present a novel family of RW locks that are de-
signed to leverage NUMA features and deliver better performance
and scalability than any prior RW lock algorithm. We take a three-
pronged approach in our lock designs. First, similar to DV, we
maintain a distributed structure for the readers metadata such that
readers denote their intent by updating only locations associated
with their node. By localizing updates to read indicators we reduce
coherence traffic on the interconnect. Second, writers preferentially
hand off access permission to blocked writers on the same node,
enhancing reference locality in the node’s cache for both the lock
metadata and data accessed in the critical section it protects. Fi-
nally, our algorithms maintain tight execution paths for both read-
ers and writers, reducing latency of the lock acquisition and release
operations.

Our RW lock algorithms build on the recently developed lock
cohorting technique [7], which allows for the construction of
NUMA-aware mutual exclusion locks. Briefly, writers use a co-
hort lock to synchronize with each other and to maintain writer-
vs-writer exclusion. Using the cohort locking approach, a writer
releasing the lock generally prefers to transfer ownership to a pend-
ing local writer (if there is one), thus reducing lock migrations3

between nodes.
Our RW locks also contain distributed implementations of read

indicators, a data structure that tracks the existence of readers [15].
Readers “arrive” at these read indicators during lock acquisition
and “depart” from them during lock release. Writers query the
read indicators to detect concurrently active readers. Because of
the distributed nature of our read indicators, the readers need to
access just the node-specific metadata of the lock. We additionally
use simple flags and checks for coordination between readers and
writers. The result is a family of surprisingly simple algorithms that
push the performance envelope of RW locks on NUMA systems far
beyond the prior state-of-the-art algorithms.

Our various RW locks can be differentiated on the basis of
the fairness properties they provide as recognized by Courtois et

2 The term “distributed” was coined by Vyukov for his algorithm [20],
but this algorithm appears to be the same as Hsieh and Weihl’s “static
algorithm” [11]
3 We say that lock migration occurs when the lock is consecutively acquired
by threads residing on distinct NUMA nodes. On a cache-coherent NUMA
system, lock migration leads to the transfer of cache lines–both for lines
underlying the lock metadata as well as for lines underlying mutable data
accessed in the critical section protected by the lock—from the cache
associated with the first thread to that of the second thread.

Figure 1. An example multi-core multi-chip NUMA system con-
taining 2 chips with 4 cores per chip. Each chip is a NUMA node.
Each core can have multiple hardware thread contexts (not shown
in the figure). Each core has its individual L1 cache, and all cores
on a chip share an L2 cache. Inter-thread communication via local
caches (L1 and L2) is significantly faster than via remote caches
because the latter involve coherence messages across the intercon-
nect. In the figure, threads r1..r6 intend to acquire a RW lock in
read mode, and threads w1..w6 intend to acquire the same lock in
write mode.

al. [2]. In particular, we present locks exhibiting different “prefer-
ence” policies: reader-preference, writer-preference, and neutral-
preference. The reader-preference policy dictates that readers
should acquire (be granted) the lock as early as possible, regard-
less of arrival order, whereas the writer-preference policy has a
symmetric bias towards writers. More concretely, these preference
policies allow readers or writers to “bypass” prior pending writ-
ers or readers (respectively) in the race to acquire the lock. The
preference policies—except for the neutral policy—may lead to
starvation of threads engaged in the non-preferred lock acquisition
operation. We avoid such situations by allowing the lock mecha-
nism to temporarily override the preference policy so as to allow
forward progress of starving threads. Starving threads become “im-
patient” and transiently change the preference policy.

We present an empirical evaluation of our RW locks, compar-
ing them with each other and with prior RW lock implementations.
Our evaluation, conducted on a 256-way 4-node Oracle SPARC
T5440TM server, shows that our locks significantly outperform all
prior RW locks on a diverse set of workloads. In our microbench-
mark experiments, our locks outperform the prior best RW lock
(the SNZI-based ROLL lock [15]) by up to a factor of 10.

We discuss our RW lock design approach in Section 2. In Sec-
tion 3, we present our lock algorithms in detail. We present our
empirical evaluation in Section 4, and conclude in Section 5.

2. Lock Design Rationale

NUMA-aware mutex locks have been explored in depth [3, 7, 17,
19]. However, to the best of our knowledge, there has been no prior
effort toward constructing NUMA-aware RW locks. NUMA-aware
mutex lock designs pursue only one goal – reduction of the lock

158

Figure 2. Execution scenarios depicting possible locking sched-
ules for Figure 1

migration frequency so as to generate better node-local locality of
reference for the lock and the critical section it protects. NUMA-
aware mutex locks act to reduce the rate of write invalidations and
coherence misses satisfied by cache-to-cache transfers from remote
caches via the interconnect. We believe that, just like general RW
locks, NUMA-aware RW lock designs must additionally consider
the complementary goal of maximizing reader-reader concurrency.

We observe an interesting tension between these two goals:
promoting concurrent reader-reader sharing across NUMA nodes
tends to lead to designs that “spread” the lock metadata and criti-
cal section data across these nodes, whereas reducing the lock mi-
gration rate tends to significantly curtail this spread. However, this
apparent contradiction between our goals can be effectively recon-
ciled by using a policy that tries to reduce lock migrations only
between writers while at the same time maximizing concurrency
between readers. For this strategy to be most effective, we must
aggressively “batch” the concurrent writer locking requests com-
ing from a single NUMA node and maintain a high local writer-
to-writer lock hand off rate. We note that this aggressive writer
batching approach is not completely out-of-place. To the contrary,
it nicely complements the goal of maximizing reader-reader con-
currency because the latter can benefit significantly by aggressively
aggregating (co-scheduling) reader locking requests. We illustrate
the potential benefits of these design goals using an example.

Figure 1 depicts a NUMA system with six threads attempting
to acquire a lock L in read mode, and six threads attempting to
acquire L in write mode. We assume that the critical sections pro-
tected by the lock access the same data. Figure 2 shows possible
critical section execution schedules for these readers and writers
when the critical section is protected by different kinds of RW
locks. Figure 2(a) shows a possible critical section execution sched-
ule arbitrated by a naive RW lock that does not aggressively ag-
gregate readers or provide back-to-back consecutive batching of
writers from a given NUMA node. The schedule shows that the
lock does not provide good reader-reader concurrency, and hence

it takes more time to execute all the critical sections. Assuming
a backlog of pending readers, higher rates of alternation between
read and write modes yields lower levels of reader-reader concur-
rency. Figure 2(b) shows a scheduling policy that yields improved
reader-reader concurrency. By aggressively aggregating read re-
quests the lock successfully co-scheduled a large group of readers,
allowing them to execute the critical section concurrently. How-
ever, the order of writers alternates between the two NUMA nodes
from Figure 1. This leads to significant coherence traffic that slows
down the writers. The width of the boxes reflects the relative time
taken to complete a critical section invocation, with broader boxes
showing the overheads associated with inter-node communication
latencies. Figure 2(c) addresses this problem by batching together
writers from the same NUMA node in a consecutive back-to-back
fashion. As a result, writers w2, w3, w5, and w6 will incur fewer
coherence misses during the execution of their critical sections. As
we shall see in Section 4, these savings translate to significant per-
formance gains for our locks.

3. RW Lock Algorithms

We use lock cohorting [7] as a starting point for our RW lock
designs. Each of our RW lock instances contains a single central
cohort mutual exclusion lock that is used to synchronize writers –
we resolve writer-vs-writer conflicts via the cohort lock. Writers
must first acquire this cohort lock in order to gain exclusive (write)
ownership of the RW lock. Before executing the critical section,
the writer owning the cohort lock must also reconcile reader-vs-
writer conflicts by ensuring that there are no concurrent readers
executing or about to execute their respective critical sections. The
readers counterpart of our RW locks use distributed read indicators
(ReadIndr for short). To acquire a RW lock in read mode, a reader
must arrive at the lock’s ReadIndr. ReadIndr is implemented as a
distributed counter, with a counter per NUMA node. Each reader
increments its local counter during arrival and decrements the local
counter during depart. Crucially, writers update the central lock but
only query and do not update the multiple reader indicators.

In this section we describe the cohort lock used to provide write-
write exclusion and then present three RW lock algorithms, each of
which implements one of the three preference policies: neutral-,
reader- or writer-preference. We first present these algorithms at
a high level (Sections 3.2 through 3.4). We then make an impor-
tant observation that implementors can substitute almost any type
of mutex lock and reader indicator mechanism into their imple-
mentation of our RW locks. Finally, we describe the scalable read
indicator implementations used in our RW locks.

3.1 The Writer Cohort Lock

Lock cohorting is a technique to compose NUMA-aware mutex
locks from NUMA-oblivious mutex locks. It leverages two key
properties of mutex lock implementations – (i) cohort detection,
where a lock owner can determine whether there are additional
threads waiting to acquire the lock; and (ii) thread-obliviousness,
where the lock can be acquired by one thread and released by
any other thread. Cohort locks are hierarchical in structure, with
one top-level lock and multiple locks at the second level, one for
each node in the NUMA system. The top-level lock is thread-
oblivious and the second-level locks must have the property of
cohort detection. A cohort lock is said to be owned by a thread
when that thread owns the top-level lock.

To acquire the cohort lock, a thread must first acquire owner-
ship of the lock assigned to its node and then acquire ownership
of the top-level lock. After executing its critical section, the co-
hort lock owner uses the cohort detection property of the node-
local lock to determine if there are any local successors, and hands
off ownership of the local lock to a successor. With this local lock
hand off, the owner also implicitly passes ownership of the top-

159

level lock to that same successor. If the lock owner determines that
there are no local successors then it must release the top-level lock.
The top-level lock’s thread-obliviousness property comes into play
here – the lock’s ownership can be acquired by one thread from a
node, then implicitly circulated among several threads in that node,
and eventually released by some (possibly different) thread in that
node. To avoid starvation and provide long-term fairness, cohort
lock implementations typically bound the number of back-to-back
local lock transfers. (We used a bound of 64 in all our experiments
described in this paper). Our algorithm intentionally trades strict
short-term FIFO/FCFS fairness for improved aggregate through-
put. Specifically, we leverage unfairness – where admission order
deviates from arrival order – in order to reduce lock migrations
and improve aggregate throughput of a set of contending threads.
Unfairness, applied judiciously, and leveraged appropriately, can
result in reduced coherence traffic and improved cache residency.

The primary goal of cohort locks is to reduce interconnect co-
herence traffic and coherence misses. In turn the hit rate in the local
cache improves. We presume that critical section invocations under
the same lock exhibit reference similarity – acquiring lock L is a
good predictor that the critical section protected by L will access
data that was accessed by recent prior critical sections protected by
L. After a local hand off, data to be written by the next lock owner
is more apt to be in the owner’s local cache, already in modified
coherence state, as it may have been written by the prior owner. As
such, the critical section may execute faster than if the prior owner
resided on a different node. Cohort locks provide benefit by reduc-
ing coherence traffic on both lock metadata and data protected by
the locks. If a cache line to be read is in modified state in some re-
mote cache then it must currently be invalid or not present in the
local cache. The line must be transfered to the local cache from the
remote cache via the interconnect and downgraded to shared state
in the remote cache. Similarly, if a cache line to be written is not
already in modified state in the local cache, all remote copies must
be invalidated, and, if the line is not in shared state, the contents
must be transfered to the writer’s cache. Read-read is the only form
of sharing that does not require coherence communication. We are
less concerned with classic NUMA issues such as the placement
of memory relative to the location of threads that will access that
memory and more interested in which caches shared data might
reside in, and in what coherence states. Cohort locking works to re-
duce write invalidation and coherence misses satisfied from remote
caches and does not specifically address remote capacity, conflict,
and cold misses, which are also satisfied by transfers over the inter-
connect.

For use in our RW locks, we have developed a new cohort lock
that uses classic ticket locks [12] for the NUMA node-local locks
and a partitioned ticket lock [5] for the top-level lock. We call
this lock C-PTL-TKT, short for Partitioned-Ticket-Ticket cohort
lock. We expose a new isLocked interface that allows readers to
determine if the write lock is held. This function is implemented by
comparing the request and grant indices of the top-level partitioned
ticket lock. We elected to use C-PTL-TKT in our RW locks as it
is competitive with the best of the cohort locks, avoids the node
management overheads inherent in classic queue-based locks such
as MCS but still provides local spinning. The top-level and node-
level locks are FIFO although the resultant C-PTL-TKT lock is not
itself necessarily FIFO.

3.2 The Neutral-Preference Lock

Our neutral-preference lock, called C-RW-NP (Cohort; Read-
Write; Neutral-Preference) for short, attempts to ensure fairness
between readers and writers. By fairness here we mean that the
readers or writers do not get any preferential treatment over the
writers or readers, respectively. To do so, all threads – including
readers and writers – are “funnelled” through the central cohort

1: reader:
2: CohortLock.acquire()
3: ReadIndr.arrive()
4: CohortLock.release()
5: <read-critical-section>
6: ReadIndr.depart()

7: writer:
8: CohortLock.acquire()
9: while NOT(ReadIndr.isEmpty())
10: Pause
11: <write-critical-section>
12: CohortLock.release()

Figure 3. The Neutral-Preference Lock (C-RW-NP). The top half
is executed by a reader and the bottom half by a writer. For simplic-
ity, the pseudo-code lists the entirety of lock acquisition, critical
section execution, and lock release operations in sequential order.
In their lock acquisition steps, both readers and writers acquire the
cohort lock, while readers also arrive at the ReadIndr. ReadIndr ar-
rival and departures must be atomic.
1: reader:
2: while RBarrier != 0
3: Pause
4: ReadIndr.arrive()
5: while CohortLock.isLocked()
6: Pause
7: <read-critical-section>
8: ReadIndr.depart()

9: writer:
10: bRaised = false // local flag
11: start:
12: CohortLock.acquire()
13: if NOT(ReadIndr.isEmpty())
14: CohortLock.release()
15: while NOT(ReadIndr.isEmpty())
16: Pause
17: if RanOutOfPatience AND ~bRaised
18 // erect barrier to stall readers
19: atomically increment RBarrier
20: bRaised = true
21: goto start
22: if bRaised
23: atomically decrement RBarrier
24: <write-critical-section>
25: CohortLock.release()

Figure 4. The Reader-Preference Lock (C-RW-RP).

lock, an approach that has been used in the past [15, 16]. Figure 3
depicts the high-level pseudo-code of C-RW-NP. Each thread must
first acquire CohortLock. The reader uses the central lock to ob-
tain permission to arrive at ReadIndr (the implementation details of
which appear in Section 3.6), then immediately releases the lock,
and proceeds to execute its critical section. The fact that readers ex-
ecute their critical sections after releasing CohortLock enables the
potential for reader-reader concurrency. After acquiring the cohort
lock, the writer must ensure that there are no concurrent conflicting
readers. This is done by spinning on ReadIndr (lines 9 and 10) wait-
ing for any readers to depart. This algorithm is clearly very simple
and also ensures neutral preference since both the readers and the
writers have to acquire the cohort lock. However, requiring read-
ers to acquire the cohort lock can be detrimental to the scalability
of C-RW-NP, and also increases the latency of each read acquisi-
tion request. C-RW-NPpreserves some cache locality benefits for
accesses to the lock metadata and the critical section because all
operations funnel through the central cohort lock.

We note that C-RW-NP does not guarantee FIFO semantics.
Rather, admission ordering is determined by the prevailing policy
imposed by the underlying CohortLock.

3.3 The Reader-Preference Lock

As noted above, C-RW-NP has a crucial drawback arising from the
requirement that readers are forced to acquire the central Cohort-
Lock. Acquiring the CohortLock incurs extra path length and over-

160

heads for read operations, even if the cohort lock is uncontended.
Under load, contention on the central lock can result in extra co-
herence traffic and contention for available interconnect bandwidth
although this bottleneck is mitigated to some degree by our choice
of lock cohorting which acts to reduce inter-node coherence traf-
fic. Furthermore, the extra serialization related to the CohortLock

critical section in the read path – albeit very brief – can constitute
a scalability bottleneck. Finally, the algorithm’s ordering of reader
and writer requests based on the cohort lock acquisition order re-
stricts the achievable degree of reader-reader concurrency. In the
worst case, there will be no reader-reader concurrency if readers
and writers alternate in the cohort lock acquisition order. We over-
come both these problems in our reader-preference lock algorithm
(called C-RW-RP for short).

Intuitively it makes sense to more aggressively aggregate reader
lock acquisition requests to maximize reader-reader concurrency
for better scalability. This, however, requires the ability to allow
newly arriving readers to bypass writers that arrived earlier but that
are still waiting to acquire the lock. This observation was made
in the earliest work on RW locks by Courtois et al. [2], and then
followed by other works that make the same trade off between
fairness and scalability [11, 15, 16]. Our C-RW-RP algorithm also
entails the same trade off.

Figure 4 depicts the pseudo-code of C-RW-RP. Readers and
writers interact with each other in a way that is reminiscent of
the classic Dekker locking idiom [8, 10], where each first declares
its existence to the other, and then checks for the other’s status.
To detect and resolve conflicts, readers must be visible to writers,
and writers visible to readers and other potential writers. C-RW-RP

readers do not acquire the cohort lock. Instead, they directly arrive
at the lock’s ReadIndr (line 4). However, each reader can make
forward progress only when there are no “active” writers queued
on the cohort lock (lines 5–6) Thereafter readers can execute their
critical sections and release the lock by departing from ReadIndr.

Writers first acquire CohortLock (line 12) and then verify that
there are no concurrent “active” readers. If there are any concurrent
readers (indicated by the ReadIndr), the writer releases CohortLock

(lines 13–14) and then waits for the readers to drain (line 15). Note
that there is a danger of starvation of the writers if they simply wait
for no readers to be present but there is a steady stream of arriving
readers. To avoid this problem, we have introduced a special reader
barrier (called RBarrier) that lets the writer temporarily block all
new readers from acquiring read ownership of C-RW-RP. Lines
17–20 show the writer raising the barrier (which is then lowered
on line 23), and lines 2–3 show the new readers being blocked by
the barrier4. The reader barrier is implemented as a single central
counter. The writer waits for a pre-determined amount of time
before running out of patience on line 17. The writer’s “patience
threshold” is fairly long so that the barrier is raised rarely and as a
result we do not expect it to become a contention bottleneck. In our
experiments we used a writer patience threshold of 1000 iterations
of the busy-wait loop. The threshold is a tunable parameter. After
the writer raises the barrier, the readers steadily drain and when all
readers have departed the writer may execute its critical section
(line 24) and then finally relinquish write permission by simply
releasing CohortLock (line 25).

While the above algorithm is simple, it has a significant perfor-
mance flaw because of an interesting interaction between contend-
ing readers and writers and the succession policy of the Cohort-

Lock: Consider an execution scenario where N writers W1, W2,
W3, ..., WN are queued on the cohort lock. W1 is the lock owner

4 There may be another pathology that lets readers starve in the case where
writers continuously keep raising the reader barrier and do not allow any
readers to make forward progress. We consider such a situation to be even
more rare than the rare case where writers run out of patience and raise the
reader barrier, and as a result, do not address it in our algorithm.

but it has not yet reached line 13. This means that the isLocked

function called on line 5 will return true, and block all the readers.
A multitude of readers arrive at that time, atomically incrementing
ReadIndr, and then spin-wait for isLocked to return false. Next, W1

executes line 13, detects concurrent readers, and releases Cohort-

Lock on line 14. In the process, W1 hands off CohortLock to W2,
which in turn similarly hands off CohortLock to W3, and so on. All
this while, CohortLock remains in the locked state though the lock
owner keeps changing, and isLocked returns true for all the readers
spinning on it. This circulation of CohortLock ownership between
the writers leads to superfluous coherence activity on the lock meta-
data as well as long and unnecessary waiting periods for readers.
In our experiments we have observed that this undesirable interac-
tion between readers and writers leads to significant performance
degradation. Furthermore, circulation voids any ordering imposed
between writers by the underlying CohortLock.

To avoid this problem we add a new WActive field to C-RW-

RP that reflects the logical state of the CohortLock. We modify
the reader-writer conflict detection logic in line 5 of Figure 4 to
spin while WActive is true, instead of spinning on CohortLock.
Meanwhile, for the writers, the code between lines 11 and 21
changes to the following:

CohortLock.acquire()
loop:

while NOT(ReadIndr.IsEmpty())
if RanOutOfPatience AND ~bRaised

// erect barrier to stall readers
atomically increment RBarrier
bRaised = true

WActive = true // set flag for readers to spin
if NOT(ReadIndr.IsEmpty())

// there exist some active readers
WActive = false // reset the flag
goto loop

Writers acquire CohortLock in the usual fashion and then enter a
loop. The code in the loop first waits for ReadIndr to show that
there are no pending or active readers, optionally erecting RBarrier

if the writer becomes impatient. After ReadIndr indicates that there
are no active readers, the code sets WActive to true, and then
validates that there are no active or pending readers. If this is the
case then control exits the loop and passes into the write critical
section. If ReadIndr indicates the existence of readers, however, the
code sets WActive to false and passes control back to the top of
the the loop which again waits for extant readers to depart. The
writer continues to hold CohortLock while it waits for the readers
to vacate, avoiding superfluous lock hand offs between writers.
After completing its critical section the writer releases the lock
by setting WActive to false and then releasing CohortLock. Readers
can be blocked by writers only in the brief window where the
writer sets WActive and then resets it after detecting the pending
readers. We refer to this form as C-RW-RP-opt. Notice that WActive

is modified only under CohortLock, and reflects the lock’s state:
true if CohortLock is acquired, and false otherwise. There is no
analogous writer-preference “-opt” form as readers can efficiently
rescind publication of their intent to take read permission and then
defer to pending writers.

3.4 The Writer-Preference Lock

Conventional wisdom suggests that the reader-preference pol-
icy would perform better than both the writer and the neutral-
preference policies. Since the application developer has selected
a RW lock instead of a mutual exclusion lock, we expect the work-
load to be read-dominated. The intuition is that packing together
as many readers as possible generally leads to better reader-reader
concurrency, and hence better throughput. Though we agree with
the intuition, we contend that, assuming that a RW lock is acquired
by threads in read mode most of the time, the writer-preference
policy indirectly leads to the same result – packing together large
numbers of reader requests. This is because preferential treatment

161

1: reader:
2: bRaised = false // local flag
3: start:
4: ReadIndr.arrive()
5: if CohortLock.isLocked()
6: ReadIndr.depart()
7: while CohortLock.isLocked()
8: Pause
9: if RanOutOfPatience AND ~bRaised

10: atomically increment WBarrier
11: bRaised = true
12: goto start
13: if bRaised
14: atomically decrement WBarrier
15: <read-critical-section>
16: ReadIndr.depart()

17: writer:
18: while WBarrier != 0
19: Pause
20: CohortLock.acquire()
21: while NOT(ReadIndr.isEmpty())
22: Pause
23: <write-critical-section>
24: CohortLock.release()

Figure 5. The Writer-Preference Lock (C-RW-WP).

of writers leads to a build up of pending reader requests which are
then granted en masse when all the writers complete their critical
sections. Furthermore, we have observed that the reader-preference
policy actually leads to an interesting performance pathology,
which we describe in Section 4.3, that can seriously undermine
the lock’s scalability potential.

Figure 5 depicts the pseudo-code for our writer-preference lock,
which we call C-RW-WP. Our C-RW-WP algorithm is clearly sym-
metric to our C-RW-RP algorithm, the only difference being that
the roles of readers and writers in their interactions are switched.
Readers arrive at the lock’s ReadIndr (line 4), check for a writer
(line 5), and if there is one, they depart from the ReadIndr and wait
for the writers to drain. If a reader runs out of patience – which is
a tunable parameter set to 1000 in our experiments – it can raise
a writer barrier (line 10) to block out new writers from acquiring
CohortLock (lines 18–19). Writers first verify that the writer barrier
has not been raised (line 18–19), then acquire CohortLock (line 20)
and ensure that there are no concurrent readers (lines 21–22) before
executing the critical section.

3.5 RW Lock Generalization

We observe that our RW lock algorithms are oblivious of the under-
lying read indicator (ReadIndr) and mutex lock (CohortLock) imple-
mentations. Our RW locks require the read indicator data structure
to provide just the arrive, depart, and isEmpty operations, and the
mutex lock to provide acquire, release, and isLocked operations.
Any read indicators and mutex locks that support these operations
can be trivially plugged into our algorithms. Furthermore we ex-
pect that most implementations of read indicators and mutex locks
can support all these operations with at most trivial modifications.

The design flexibility afforded by our RW locks grants program-
mers significant leverage to build RW locks that are best suited for
their applications. For instance, in this paper, we have proposed
NUMA-aware RW locks that leverage known NUMA-aware mutex
locks and scalable read indicators. In our empirical evaluation (Sec-
tion 4), we also present performance results of a RW lock that uses
distributed counters in the read indicator, and the MCS lock [12]
for writer-writer mutual exclusion. Such a lock may be appropriate
for applications where writing is exceptionally rare.

3.6 Tracking Readers

Lev et al. [15] observed that readers of a RW lock can be tracked
with just the read indicator abstraction. Writers checking for the
existence of conflicting readers do not need an exact count of read-
ers, but instead need only determine if there are any extant readers.

This read indicator can be implemented as a simple counter, up-
dated atomically, which tracks the number of readers that are exe-
cuting or intend to execute their respective critical sections. How-
ever, a simple counter does not scale on a NUMA system. Having
made this observation, Lev et al. proposed a SNZI-based [9] solu-
tion in their RW locks [15]. The SNZI-based solution significantly
scales the read indicator, however the algorithm is complex and
readers incur significant overheads at low and moderate contention
levels (as we shall see in Section 4). As a result, we have adopted
a simple strategy where we “split” a logical counter into multiple
physical counters, one per NUMA node. The main goal of our ap-
proach is to have a solution that has low latency at low to moderate
read arrival rates and scales well at high arrival rates.

A reader thread always manipulates its node-local reader counter.
This ensures that counter manipulations do not lead to inter-node
coherence traffic. However, after acquiring the internal cohort lock,
the writer must peruse through all the reader counters of the RW
lock to determine if it is safe to proceed executing the critical sec-
tion. This adds overhead to the writer’s execution path. There is a
clear trade off here, and assuming that a RW lock will be acquired
in read mode most often, we have opted to simplify the reader’s ex-
ecution path (which involves an increment of just the local reader
counter) at the cost of making the writer’s execution path longer.
Furthermore, most multi-core multi-chip systems available today
have relatively small number of NUMA nodes (4 in the system used
in our experiments), and we believe the overhead on the writer’s
execution path is not a major performance concern on these sys-
tems. Future NUMA systems with larger numbers of nodes may
pose a problem, but we leave the exploration of possible solutions
to future work.

The decentralized split-counter can itself be implemented in
multiple ways. We discuss two approaches. First is the trivial split-
counter, where each node-specific counter is an integer counter.
Each reader atomically increments the counter assigned to the
reader’s node during lock acquisition (arrival), and atomically
decrements that same counter during lock release (departure).
Using alignment and padding, each node-specific counter is se-
questered on its own cache line to avoid false sharing. Each writer,
during lock acquisition, verifies that each node-specific counter is
0, and spin-waits on any non-zero counter.

The simple split-counter approach, though effective in reducing
inter-node coherence traffic for readers, still admits intra-node con-
tention. Our second approach reduces this contention by employing
a pair of ingress and egress counters in place of each node-specific
counter. A reader atomically increments the ingress counter dur-
ing lock acquisition, and atomically increments the egress counter
during lock release. By splitting the logical node-level counter into
two variables we divide contention arising from rapid intra-node ar-
rival and departure of readers. On a given node, arriving threads can
update ingress independently of concurrently departing threads that
are incrementing egress. The ingress and egress counters for a given
node may reside on the same cache line. The counter is logically
0 when ingress and egress are equal. Interestingly, the approach
of using per-node counters or per-node split ingress-egress coun-
ters appears to outperform SNZI-based reader counters, at least for
the platforms on which we have taken performance data. We be-
lieve this outcome to be platform-specific. Given a sufficiently large
number of nodes, the burden of work required to scan those nodes
by writers when resolving reader-vs-writer conflicts could become
prohibitive. But on current platforms split ingress-egress counters
are our preferred implementation for reader counters.

During lock acquisition, a writer verifies that each node-specific
ingress-egress pair is equal. This cannot be done atomically, and
special care needs to be taken to avoid any races with concurrent
readers that are manipulating the counters. More specifically, in our
C-RW-WP algorithm, the writer must first read the egress counter

162

and then the ingress counter in order to correctly determine if the
two are equal. Note that both these counters are monotonically
increasing, and it is always guaranteed that egress ≤ ingress
at any given time.

4. Empirical Evaluation

We now present the empirical evaluation of our NUMA-aware RW
locks, comparing them with each other and also with other state-
of-the-art RW locks. We first present scalability results of these
locks on a synthetic microbenchmark. Our results cover a wide
range of configurations on varying critical and non-critical section
lengths and distributions of read-only and read-write critical sec-
tions. We also report what we believe to be a fundamental perfor-
mance pathology in reader-preference locks. We thereafter show
how read indicator implementations affect the scalability of our
RW locks. Finally, we present performance results of the kccache-

test benchmark of the Kyoto-Cabinet open-source database pack-
age, when used with different RW locks. Our empirical evaluation
shows that our NUMA-aware RW locks deliver far superior perfor-
mance than all prior RW locks.

We present performance results of all our locks: the C-RW-NP

lock, both the variants of the C-RW-RP lock (the basic C-RW-RP

lock, and its optimized form, C-RW-RP-opt, which eliminates the
writer ownership circulation problem), and the C-RW-WP lock. Un-
less specified otherwise, we use the split ingress-egress counter for
ReadIndr in our algorithms. We compare our locks with the SNZI-
based ROLL lock, the distributed RW lock (DV), and the recently
published NUMA-oblivious RW lock by Shirako et al. [18]. Since
our locks are built on top of cohort locks, we add a simple mutual-
exclusion cohort lock in the mix to understand the benefits our
RW locks give above and beyond cohort locks. Finally, to quan-
tify the benefits of using a cohort lock in our RW locks, we com-
pare them with a variant of C-RW-WP that uses an MCS lock for
writer-writer exclusion. We call this the DR-MCS lock (short for
Distributed Readers, MCS writers).

We implemented all of the above algorithms in C compiled with
GCC 4.4.1 at optimization level -O3 in 32-bit mode. The exper-
iments were conducted on an Oracle T5440 series system which
consists of 4 Niagara T2+ SPARC chips, each chip containing 8
cores, and each core containing 2 pipelines with 4 hardware thread
contexts per pipeline, for a total of 256 hardware thread contexts,
running at a 1.4 GHz clock frequency. Each chip has locally con-
nected memory, a 4MB L2 cache, and each core has a shared 8KB
L1 data cache. Each T2+ chip is a distinct NUMA node, and the
nodes are connected via a central coherence hub. The Solaris 10
scheduler is work-conserving and to maintain cache residency will
try to avoid migrating threads. Thread migration was observed to be
minimal for all our experiments. While not shown in our pseudo-
code, explicit memory fences were inserted as necessary.

We implemented all the above locks within LD PRELOAD in-
terposition libraries that expose the standard POSIX pthread rwlock t
programming interface. This allows us to change lock implemen-
tations by varying the LD PRELOAD environment variable and
without modifying the application code that uses RW locks.

We use the Solaris schedctl interface to efficiently query the
identity of the CPU on which a thread is running, requiring just
two load instructions on SPARC and x86 platforms. In turn the
CPU number may be trivially and efficiently converted to a NUMA
node number. In our implementation a thread queries its NUMA
node number each time it tries to acquire a lock. We record that
number and ensure that readers depart from the same node. The
RDTSCP instruction may be a suitable alternative to schedctl on
other x86-based platforms where the kernel has arranged to return
the CPUID.

4.1 RWBench

To understand the performance characteristics of our locks, and
compare them with other locks, we implemented a synthetic multi-
threaded microbenchmark that stresses a single RW lock by forcing
threads to repeatedly execute critical sections in read or write mode.
The microbenchmark, which we call RWBench, is a flexible frame-
work that lets us experiment with various workload characteristics
such as varying critical and non-critical section lengths, distribution
of read and write mode operations, number of distinct cache lines
accessed, etc., all of which are configurable parameters. It uses the
pthreads RW lock interface to acquire and release the lock, and we
use our LD PRELOAD interposition library to select various lock
implementations.

RWBench spawns the configured number of concurrent threads,
each of which loops continuously for 10 seconds. Each top-level
iteration starts by casting a biased Bernoulli dice via a thread-local
random number generator to determine if the particular iteration
should execute a read-only or read-write critical section. The prob-
ability with which each loop iteration selects read-write critical
sections is a configurable parameter. The critical section touches
a single shared array of 64 integers which is protected by a single
global RW lock instance. The read-only operation iterates through
an inner loop for RCSLen times (a configurable parameter) where
each iteration fetches 2 randomly selected integers from the shared
array. The read-write operation iterates through an inner loop for
WCSLen times (another configurable parameter) where each itera-
tion selects two integers from the shared array, and adds a random
value to one integer and subtracts that same value from the other
integer. The non-critical section of the main loop similarly updates
another thread-private array of 64 integers for NCSLen iterations.
At the conclusion of the 10 second run the benchmark verifies that
the sum of all the values in the shared array is 0.

The benchmark reports aggregate throughput at the end of a 10
second run, expressed as iterations of top-level loop executed by
the worker threads. We ran 3 trials for each configuration and re-
port their median result. The observed variance was extremely low.
In order to adhere as much as possible to real-world execution envi-
ronments, we do not artificially bind threads to hardware contexts,
and instead rely on the default Solaris kernel scheduler to manage
placement of the benchmark’s threads in the NUMA system [4].
Unlike some other NUMA-aware locks, our locks tolerate ambient
thread placement instead of requiring explicit binding.

4.2 RWBench Scalability Test

Figure 6 reports throughput of RWBench with the different locks,
and different read/write percent distributions. We believe the read-
write distribution mix covers a broad swath of workloads that ap-
pear in real application settings. We collected data for higher write
percent configurations (up to 50% writes), and found the results to
be qualitatively similar to that of Figure 6 (d). The critical and non-
critical section sizes in these experiments were deliberately kept
small to help us better understand the behavior of all the RW locks
under high arrival rates.

First, C-RW-WP is clearly the best performer across the board.
Interestingly, DR-MCS performs the second best at 2% writes, but
deteriorates considerably with increasing write load. This is be-
cause the writes start to play an increasingly important role in per-
formance and DR-MCS experiences excessive coherence traffic due
to the NUMA-oblivious queuing of writers on its internal MCS
lock. DV is competitive at low thread counts, but deteriorates sig-
nificantly with high contention, presumably because writers must
acquire all the NUMA-node RW locks, which increases both the
coherence traffic and delays in lock acquisition in both read and
write modes.

ROLL initially scales slowly with increasing thread count. This
is because the threads in our test harness are dispersed by the

163

0.
2

0.
5

1.
0

2.
0

5.
0

10
.0

Threads

T
hr

ou
gh

pu
t

5 10 15 25 40 60 90 140 225

C−RW−WP
C−RW−NP
C−RW−RP
C−RW−RP−opt
Cohort
DR−MCS
DV
ROLL
Shirako

(a) 98% Reads, 2% Writes

0.
1

0.
2

0.
5

1.
0

2.
0

5.
0

Threads

T
hr

ou
gh

pu
t

5 10 15 25 40 60 90 140 225

(b) 95% Reads, 5% Writes

0.
05

0.
20

0.
50

2.
00

5.
00

Threads

T
hr

ou
gh

pu
t

5 10 15 25 40 60 90 140 225

(c) 90% Reads, 10% Writes

0.
05

0.
20

0.
50

2.
00

5.
00

Threads

T
hr

ou
gh

pu
t

5 10 15 25 40 60 90 140 225

(d) 80% Reads, 20% Writes

Figure 6. RWBench scalability results of various RW locks for varying read/write distributions: 2%, 5%, 10%, and 20% of write mode lock
acquisitions. All graphs are in loglog scale. Here RCSLen = 4, WCSLen = 4, and NCSLen = 32. We vary the number of threads from 1 to
255 on the X-axis. Y-axis throughput is expressed in terms of aggregate million loop iterations performed per second.

Solaris scheduler over the entire system [4], and as a result, there
are fewer threads dedicated to a SNZI-tree leaf node of the ROLL

lock. The end result is that more threads tend to “climb” up the
SNZI-tree and compete at the top level (root) node, which is shared
across the entire system and consequently leads to an increase in
coherence traffic. ROLL starts to scale more quickly at high thread
counts, presumably because the load at each leaf of the SNZI-
tree is sufficient to reduce the number of threads visiting the root
node, thus reducing the coherence traffic over the system. However,
this scaling is constrained even at 20% write load, where writers,
which are NUMA-oblivious, begin to play a noticeable role in the
scalability of the lock. The Shirako lock, which is another recent
NUMA-oblivious lock, does not scale on our NUMA system.

Cohort exhibits interesting performance characteristics. Since it
does not provide any reader-reader concurrency, Cohort does not
scale as well as the best RW locks. However, as the write rate in-
creases, Cohort starts to close its performance gap with our other
RW locks, and is quite competitive with all but C-RW-WP at 20%
write loads. This demonstrates that even at modestly high write
loads, the writer-writer exclusion component of a RW lock be-
comes an important scalability factor, and since Cohort is extremely
efficient and scalable at writer-writer exclusion on NUMA systems,
it tends to be competitive with the best RW locks.

Relative to a simple mutual exclusion lock, RW locks usu-
ally have longer path lengths (latency) and access more shared
metadata. The latter can detract from scalability. Comparing Co-

hort to true RW locks is interesting as the benefits of potential
reader-reader concurrency do not necessarily overcome the addi-
tional overheads inherent in RW locks, particularly when critical
sections are relatively short or the thread count is low. C-RW-NP ap-
pears to leverage additional reader-reader concurrency benefit only
marginally over Cohort when the write load is low (2%). In all other
cases, it performs similarly to Cohort because even the readers have
to acquire the cohort lock in order to arrive at the ReadIndr.

Lastly, the difference in performance of C-RW-RP and C-RW-

RP-opt clearly demonstrates the pitfalls of the superfluous writer
ownership circulation problem in C-RW-RP. However, C-RW-RP-

opt does not scale as well as C-RW-WP because of its reader-
preference performance pathology, which we describe next.

4.3 Reader-Preference Performance Pathology

As is clear from Figure 6, our reader-preference locks perform
considerably worse than our writer-preference lock. It is well-
known that a strict reader-preference policy may allow writers
to starve. However, we have observed that a reader-preference
policy can also result in a secondary phenomenon where readers
themselves may underutilize available concurrency.

Say we have a fixed set of threads that loop, deciding randomly
whether to take a central RW lock for either reading (query) or
writing (update). We will assume that reading is more frequent
than writing – access to the RW lock is read-dominated. We will
assume that most of the threads are initially readers. Over time

164

those readers will complete their operation and some fraction will
evolve into writers, while the majority will remain readers. Those
writers will block in deference to the extant readers given the
reader-preference policy. Finally, when no readers remain active,
a writer is allowed admission. But when that writer completes its
operation it may quickly turn into a reader again, thus obstructing
the large set of blocked writers. This undesirable mode can persist.
At any given time most threads are blocked trying to acquire write
permission while either one writer is active or a small number
of readers are active. This results in underutilizing the system by
failing to leverage potential reader-reader concurrency that could
be realized with a different lock admission schedule. Even though
our workload is read-dominated, we have sufficient threads, and we
have a reader-preference lock policy, we achieve very low reader
throughput and experience diminished reader-reader concurrency.
The writer starvation effect that arises from the reader-preference
policy prevents a sufficient number of writers from evolving back
into readers, thus restricting reader-reader concurrency. While we
observed this behavior in RWBench we note that a pool of server
threads accepting query or update requests on a data structure
protected by an RW lock are also exposed to this pathology.

One might wonder if the writer-preference policy could also
lead to a similar pathology. Though incoming writers may obstruct
concurrent readers, we do not expect the problem to be as severe
with a writer-preference policy. We assume that RW locks will
be predominantly acquired in read mode. Hence, even if a set of
writers block concurrent readers, their threads will usually return
to reacquire the lock in read mode. As a result the readers will be
stalled for short intervals. Furthermore, a group of waiting readers
can proceed concurrently once all the writers get out of their way.

Strict reader/writer-preference policies may lead to the starva-
tion of the threads engaged in the non-preferred lock acquisition
operation. Consequently, to avoid such issues, we believe that a
general-purpose RW lock algorithm should detect and recover from
policy-based starvation. If the base policy is writer-preference, for
example, then if readers languish for too long then the lock can
block incoming writers and allow the backlog of readers to en-
ter. And in fact this mechanism can promote aggregation of read-
ers, yielding increased reader-reader concurrency. Effectively, the
lock can switch transiently from writer-preference to either neutral-
preference or reader-preference. Similarly, if the base lock policy is
reader-preference, when writers starve the lock could take remedial
action to ensure that writers make progress by transiently shifting
to neutral- or writer-preference. This mechanism is illustrated in
the anti-starvation facility shown in Figure 5. As an alternative to
erecting barriers to block the flow of incoming writers, we also ex-
perimented with having impatient readers acquire the CohortLock

as shown in the neutral-preference lock in Figure 3. Readers first
attempt to use the fast path, but if they fail to make reasonable
progress, they instead use a more pessimistic approach and pass
through the CohortLock. This approach also yields reasonable per-
formance.

4.4 ReadIndr Implementations

As described in Section 3.6, ReadIndr can be implemented in mul-
tiple ways. We now compare the performance of each of the three
implementations we discussed – a simple integer counter, a split
counter with one integer counter per NUMA node, and a split
ingress-egress counter with one pair of ingress-egress counters per
NUMA node. Figure 7 depicts the performance of C-RW-WP when
equipped with these counter implementations when run with 98%
reads and 2% writes. C-RW-WP-1RC represents the version of C-

RW-WP with a single central reader counter. This central counter
is clearly a scalability bottleneck and results in significant per-
formance deterioration with increasing thread count. C-RW-WP-

4RC is a variant of C-RW-WP that uses 4 simple counters, one per

0.
05

0.
20

0.
50

2.
00

5.
00

20
.0

0

Threads

T
hr

ou
gh

pu
t

5 10 15 25 40 60 90 140 225

C−RW−WP
C−RW−WP−1RC
C−RW−WP−4RC
C−RW−WP−Shuffle

Figure 7. Scalability of the various reader counter implementa-
tions used in the same RWBench test configuration as Figure 6(a).

NUMA node on our experimental platform. The improvement with
this split counter is significant and tracks the performance of C-RW-

WP (which uses 4 ingress-egress counter pairs, one pair per NUMA
node) to about 96 threads, but subsequently deteriorates because of
excess contention on each of the node-local counters. The ingress-
egress pair halves such contention, and scales better than the split
counter implementation.

The scalable performance exhibited by C-RW-WP could arise
in part by virtue of NUMA-locality via node-specific counters and
in part by simply distributing accesses over the set of 4 reader
indicator instances. C-RW-WP-Shuffle is a variation of C-RW-WP

where we randomly shuffle reader indicator indices associated with
threads. The number of threads accessing each counter remains the
same, but those threads can reside on different nodes. As can be
seen in the figure, a significant fraction of the benefit in C-RW-WP

comes from NUMA-locality.

4.5 kccachetest Performance

kccachetest is provided with the Kyoto-Cabinet distribution, a pop-
ular open-source database package. It serves as a stress test and per-
formance benchmark for the in-memory “cache hash” (CacheDB)
database. CacheDB makes heavy use of standard pthread rwlock t
operators, and performance of the benchmark is sensitive to the
quality of the lock implementation. We ran the program with the
“wicked” argument, which constructs an in-memory non-persistent
database and then runs randomly selected transactions against that
database. Both the benchmark and database reside in the same pro-
cess and communicate via calls and shared memory. The bench-
mark is internally constrained to at most 64 threads. The number
of threads can be specified on the command line, and each of the
worker threads loops, selecting a random operation to be performed
on the database. In some cases the operations are simple lookups or
deletes, while others are more complex transactions. Each thread
performs the same number of operations, and the program reports
the interval between the time the first thread starts and the time the
final thread completes. Unfortunately the size of the key range, and
thus the footprint of the in-memory database, is a function of the
number of threads. So as we increase the number of threads we
also increase the key range and the footprint, which means that the
results of runs with different numbers of threads are not easily com-
parable. As a result, we do not plot kccachetest results on a graph,
but rather use a tabular representation.

Figure 8 shows the performance of kccachetest when used with
the different RW locks. While all the locks are competitive at low
threading levels, their performance diverges significantly with in-
creasing thread counts. kccachetest contains a diverse mix of crit-

165

Locks 1T 2T 3T 4T 6T 8T 12T 16T 24T 32T 48T 64T

C-RW-WP .510 1.20 1.78 1.95 3.08 4.24 6.99 9.24 14.5 18.0 26.7 37.7
C-RW-NP .521 1.09 1.64 2.16 3.09 4.26 6.58 9.22 14.3 17.6 25.4 36.4
C-RW-RP .550 1.12 1.77 2.23 3.31 4.53 7.09 10.4 13.3 18.9 34.5 52.5
C-RW-RP-opt .531 1.15 1.76 2.19 3.30 4.54 7.45 10.5 13.5 17.9 27.0 41.2
Cohort .516 1.25 1.74 2.35 3.41 4.36 7.03 8.55 13.3 18.2 29.6 44.3
DR-MCS .531 1.13 1.58 1.94 3.17 4.19 6.79 10.2 17.6 26.7 49.6 77.1
DV .511 1.18 1.75 2.14 3.18 4.12 6.59 9.88 12.8 21.3 52.0 56.8
ROLL .547 1.25 1.55 1.99 3.32 4.50 7.79 11.3 20.2 29.0 46.4 63.3
Shirako .554 1.16 1.61 2.07 3.33 4.53 7.30 10.7 18.5 27.0 35.5 55.2

Figure 8. Scalability results of the Kyoto Cabinet kccachetest benchmark (with the command line arguments: wicked -th Thrds -capsiz

2000000 100000). Each entry in the table reports wall clock time to completion in seconds.

ical sections, including short read-only and read-write ones, and
long and complex read-write ones. Overall, the workload is domi-
nated by read-write critical sections, where the threads acquire the
RW locks in write mode. As a result, Cohort performs compara-
bly to our NUMA RW locks, and much better than all other locks
that contain NUMA-oblivious writers – DR-MCS, DV, ROLL, and
Shirako. DR-MCS scales poorly because the underlying MCS lock
acquired by writers forces the cache lines of the lock and the data it
protects to bounce between NUMA nodes more often than other
locks. Since Cohort significantly curtails lock migration, it per-
forms much better. Our NUMA-aware RW locks, except C-RW-RP,
further extend the cohorting advantage because of NUMA-friendly
reader-reader concurrency. C-RW-RP succumbs to the superfluous
writer ownership circulation performance problem described ear-
lier, and, as a result, does not scale as well as our other locks. It
does however scale better than all prior locks. Overall, C-RW-WP

and C-RW-NP, which perform the best, outperform the best of the
prior locks (DV and Shirako) by about 40%.

5. Conclusion

The rapid growth of multi-core multi-chip systems is making
NUMA architectures commonplace, and fundamental data struc-
tures and synchronization primitives must be redesigned to adapt
to these environments. We introduced a new family of surprisingly
simple NUMA-aware reader-writer locks that outperform prior
lock algorithms by a large margin. Writers use centralized lock
metadata and readers use decentralized metadata. Microbenchmark
experiments suggest that our best lock exceeds the performance of
the prior state-of-the-art by up to a factor of 10, and our exper-
iments on a real-world application, the Kyoto Cabinet database,
show our locks can boost the application’s performance by up to
40%.

Acknowledgments

We thank Doug Lea for useful discussions. Nir Shavit was sup-
ported in part by NSF grant 1217921.

References

[1] B. B. Brandenburg and J. H. Anderson. Spin-based Reader-Writer
Synchronization for Multiprocessor Real-time Systems. Real-Time
Syst., 46(1):25–87, 2010.

[2] P. J. Courtois, F. Heymans, and D. L. Parnas. Concurrent control with
”readers” and ”writers”. Communications of the ACM, 14(10):667–
668, 1971.

[3] D. Dice, V. J. Marathe, and N. Shavit. Flat Combining NUMA
Locks. In Proceedings of the 23rd ACM Symposium on Parallelism
in Algorithms and Architectures, 2011.

[4] D. Dice. Solaris Scheduling: SPARC and CPUIDs. URL https://
blogs.oracle.com/dave/entry/solaris_scheduling_and_
cpuids.

[5] D. Dice. A Partitioned Ticket Lock. In Proceedings of the 23rd ACM
Aymposium on Parallelism in Algorithms and Architectures, pages
309–310, 2011.

[6] D. Dice and N. Shavit. TLRW: Return of the Read-Write Lock. In Pro-
ceedings of the 22nd ACM Symposium on Parallelism in Algorithms
and Architectures, pages 284–293, 2010.

[7] D. Dice, V. J. Marathe, and N. Shavit. Lock Cohorting: A General
Technique for Designing NUMA Locks. In Proceedings of the 17th
ACM SIGPLAN symposium on Principles and Practice of Parallel
Programming, pages 247–256, 2012.

[8] E. W. Dijkstra. The origin of concurrent programming. chapter
Cooperating sequential processes, pages 65–138. 2002.

[9] F. Ellen, Y. Lev, V. Luchangco, and M. Moir. SNZI: Scalable NonZero
Indicators. In Proceedings of the 26th Annual ACM Symposium on
Principles of Distributed Computing, pages 13–22, 2007.

[10] E. Freudenthal and A. Gottlieb. Process coordination with fetch-
and-increment. In Proceedings of the 4th International Conference
on Architectural Support for Programming Languages and Operating
Systems, pages 260–268, 1991.

[11] W. C. Hsieh and W. E. Weihl. Scalable Reader-Writer Locks for
Parallel Systems. In Proceedings of the Sixth International Parallel
Processing Symposium, 1991.

[12] J. M. Mellor-Crummey and M. L. Scott. Algorithms for Scalable Syn-
chronization on Shared-Memory Multiprocessors. ACM Transactions
on Computer Systems, 9(1):21–65, 1991.

[13] J. M. Mellor-Crummey and M. L. Scott. Synchronization without
Contention. In Proceedings of the 4th International Conference on
Architectural Support for Programming Languages and Operating
Systems, pages 269–278, 1991.

[14] O. Krieger, M. Stumm, R. Unrau, and J. Hanna. A Fair Fast Scal-
able Reader-Writer Lock. In Proceedings of the 1993 International
Conference on Parallel Processing, pages 201–204, 1993.

[15] Y. Lev, V. Luchangco, and M. Olszewski. Scalable Reader-Writer
Locks. In Proceedings of the 21st Annual Symposium on Parallelism
in Algorithms and Architectures, pages 101–110, 2009.

[16] J. M. Mellor-Crummey and M. L. Scott. Scalable Reader-Writer
Synchronization for Shared-Memory Multiprocessors. In Proceedings
of the 3rd ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 106–113, 1991.

[17] Z. Radović and E. Hagersten. Hierarchical Backoff Locks for Nonuni-
form Communication Architectures. In HPCA-9, pages 241–252,
Anaheim, California, USA, Feb. 2003.

[18] J. Shirako, N. Vrvilo, E. G. Mercer, and V. Sarkar. Design, verification
and applications of a new read-write lock algorithm. In Proceedinbgs
of the 24th ACM symposium on Parallelism in algorithms and archi-
tectures, pages 48–57, 2012.

[19] Victor Luchangco and Dan Nussbaum and Nir Shavit. A Hierarchical
CLH Queue Lock. In Proceedings of the 12th International Euro-Par
Conference, pages 801–810, 2006.

[20] D. Vyukov. Distributed Reader-Writer Mu-
tex. URL http://www.1024cores.net/home/
lock-free-algorithms/reader-writer-problem/
distributed-reader-writer-mutex.

166

https://blogs.oracle.com/dave/entry/solaris_scheduling_and_cpuids
https://blogs.oracle.com/dave/entry/solaris_scheduling_and_cpuids
https://blogs.oracle.com/dave/entry/solaris_scheduling_and_cpuids
http://www.1024cores.net/home/lock-free-algorithms/reader-writer -problem/ distributed-reader-writer-mutex
http://www.1024cores.net/home/lock-free-algorithms/reader-writer -problem/ distributed-reader-writer-mutex
http://www.1024cores.net/home/lock-free-algorithms/reader-writer -problem/ distributed-reader-writer-mutex

	Introduction
	Lock Design Rationale
	RW Lock Algorithms
	The Writer Cohort Lock
	The Neutral-Preference Lock
	The Reader-Preference Lock
	The Writer-Preference Lock
	RW Lock Generalization
	Tracking Readers

	Empirical Evaluation
	RWBench
	RWBench Scalability Test
	Reader-Preference Performance Pathology
	ReadIndr Implementations
	kccachetest Performance

	Conclusion

