
Flat Combining and the Synchronization-Parallelism
Tradeoff

Danny Hendler
Ben-Gurion University

hendlerd@cs.bgu.ac.il

Itai Incze
Tel-Aviv University

itai.in@gmail.com

Nir Shavit
Tel-Aviv University

shanir@cs.tau.ac.il

Moran Tzafrir
Tel-Aviv University

moran.tzafrir@cs.tau.ac.il

ABSTRACT
Traditional data structure designs, whether lock-based or
lock-free, provide parallelism via fine grained synchroniza-
tion among threads.

We introduce a new synchronization paradigm based on
coarse locking, which we call flat combining. The cost of
synchronization in flat combining is so low, that having a
single thread holding a lock perform the combined access
requests of all others, delivers, up to a certain non-negligible
concurrency level, better performance than the most effec-
tive parallel finely synchronized implementations. We use
flat-combining to devise, among other structures, new lin-
earizable stack, queue, and priority queue algorithms that
greatly outperform all prior algorithms.

Categories and Subject Descriptors
D.1.3 [Concurrent Programming]: Algorithms

General Terms
Algorithms, Performance

Keywords
Multiprocessors, Concurrent Data-Structures, Synchroniza-
tion

1. INTRODUCTION
In the near future we will see processors with multiple

computing cores on anything from phones to laptops, desk-
tops, and servers. The scalability of applications on these
machines is governed by Amdahl’s Law, capturing the idea
that the extent to which we can speed up any complex com-
putation is limited by how much of the computation cannot
be parallelized and must be executed sequentially. In many

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’10,June 13–15, 2010, Thira, Santorini, Greece.
Copyright 2010 ACM 978-1-4503-0079-7/10/06 ...$10.00.

applications, the parts of the computation that are diffi-
cult to parallelize are those involving inter-thread commu-
nication via shared data structures. The design of effective
concurrent data structures is thus key to the scalability of
applications on multicore machines.

But how does one devise effective concurrent data struc-
tures? The traditional approach to concurrent data struc-
ture design, whether lock-based or lock-free, is to provide
parallelism via fine grained synchronization among threads
(see for example the Java concurrency library in the Java
6.0 JDK). From the empirical literature, to date, we get a
confirmation of this approach: letting threads add paral-
lelism via hand crafted finely synchronized data structure
design allows, even at reasonably low levels of concurrency,
to overtake the performance of structures protected by a
single global lock [4, 14, 10, 12, 7, 16].

The premise of this paper is that the above assertion is
wrong. That for a large class of data structures, the cut-
off point (in terms of machine concurrency) at which finely
synchronized concurrent implementations outperform ones
in which access to the structure is controlled by a coarse
lock, is farther out than we ever anticipated. The reason, as
one can imagine, is the cost of synchronization.

This paper introduces a new synchronization paradigm
which we call flat combining (FC). At the core of flat com-
bining is a surprisingly low cost way to allow a thread to ac-
quire a global lock on a structure, learn about all concurrent
access requests, and then perform the combined requests of
all others on it. As we show, this technique has the dual
benefit of reducing the synchronization overhead on “hot”
shared locations, and at the same time reducing the overall
cache invalidation traffic on the structure. The effect of these
reductions is so dramatic, that in a kind of “anti-Amdahl”
effect, up to high levels of concurrency, it outweighs the loss
of parallelism caused by allowing only one thread at a time
to manipulate the structure.

This paper will discuss the fundamentals of the flat com-
bining approach and show a collection of basic data struc-
tures to which it can be applied. For lack of space we will
not be able to show all the ways in which the approach can
be further extended to support higher levels of concurrency
and additional classes of structures.

1.1 Flat Combining in a nutshell
In its simplest form, the idea behind flat combining is to

have a given sequential data structure D be protected by
a lock and have an associated dynamic publication list of

a size proportional to the number of threads that are con-
currently accessing it (see Figure 1). Each thread accessing
D for the first time adds a thread-local publication record
to the list, and publishes all its successive access/modifica-
tion requests using a simple write to the request field of its
publication record (there is no need for a store-load memory
barrier). In each access, after writing its request, it checks if
the shared lock is free, and if so attempts to acquire it using
a compare-and-set (CAS) operation. A thread that success-
fully acquires the lock becomes a combiner : it scans the list,
collects pending requests, applies the combined requests to
D, writes the results back to the threads’ request fields in
the associated publication records, and releases the lock. A
thread that detects that some other thread already owns the
lock, spins on its record, waiting for the owner to return a
response in the request field, at which point it knows the
published request has been applied to D. Once in a while,
a combining thread will perform a cleanup operation on the
publication list. During this cleanup it will remove records
not recently used (we will later explain in more detail the
mechanism for determining use times), so as to shorten the
length of the combining traversals. Thus, in each repeated
access request, if a thread has an active publication record,
it will use it, and if not, it will create a new record and insert
it into the list.

Our implementation of the flat combining mechanism al-
lows us to provide, for any data structure, the same clean
concurrent object oriented interface as used in the Java con-
currency package [14] and similar C++ libraries [24]. As
we show in Section 5, for any sequential object parallelized
using flat combining, the resulting implementation will be
linearizable [9] and given some simple real world assump-
tions also starvation-free. On an intuitive level, even though
some method calls could be missed in the publication list by
a concurrent scanning combiner, the fact that every method
waits until its request is applied by the combiner, means that
a later thread cannot get a response unless the missed earlier
requests are still pending. These calls are therefore overlap-
ping and can be linearized. Finally, note that flat combining
is as robust as any global lock based data structure: in both
cases a thread holding the lock could be preempted, causing
all others to wait.1

As a concrete example of an application of flat combin-
ing, consider the implementation of a concurrent linearizable
FIFO queue, one of the most widely used inter-thread com-
munication structures. The applied operations on a queue
are enq() and deq(). The most effective known implementa-
tions are the lock-free Michael-Scott queue [17] used in the
Java concurrency package, and the basket queue of Hoffman
et. al [10]. Both suffer from a complete loss of scalability
beyond a rather low concurrency level, because all threads
must successfully apply a CAS operation to the shared head
or tail of the queue in order to complete their operation.

In contrast, in flat combining, given a sequential FIFO
queue D, the combining thread can collect all pending oper-
ations, then apply the combined requests to the queue. As
our empirical comparison shows, unlike the fastest known
concurrent implementations, in flat combining there is vir-

1On modern operating systems such as SolarisTM , one can
use mechanisms such as the schetdl command to control
the quantum allocated to a combining thread, significantly
reducing the chances of it being preempted.

tually no synchronization overhead, and the overall cache
coherence traffic is significantly reduced.

The result, as seen in Figure 2, is a highly-scalable im-
plementation of a linearizable FIFO queue that outperforms
known implementations in almost all concurrency levels, and
by a factor of more than 4 in high concurrency levels.

How broadly applicable is the flat combining paradigm?
We claim that any data structure such that k operations on
it, each taking time δ, can be combined and then applied in
time less than kδ, is a valid candidate to benefit from flat
combining.2 This applies to counters, queues, stacks etc,
but also to linked lists, priority queues and so on. For ex-
ample, in a linked list, all k collected modifications can be
combined and applied in a single pass over the list, as op-
posed to k uncombined passes. In a skip-list-based priority
queue, k remove-min operations can be combined and ap-
plied in Θ(k + log n) as opposed to Θ(k log n) uncombined
ones, which as can be seen in Figure 5, outperforms prior
art priority queue implementations considerably.

A further benefit of the flat combining approach is the
fact that access to the core data structure being used re-
mains sequential. This has implications on cache perfor-
mance, but perhaps more importantly, on flat combining as
a programming approach. As an example, considering again
priority queues, we notice that one could build in a straight-
forward way a linearizable concurrent implementation of a
state-of-the-art structure such as a pairing heap [3] by hav-
ing all requests access it using flat combining. The proof
of correctness of this flat combining pairing heap would be
straightforward because it is only ever accessed sequentially.
In contrast, based on our experience, devising a provably
correct and scalable linearizable implementation of a concur-
rent pairing heap using fine-grained synchronization, would
in itself constitute a publishable result. As seen in Figure 5,
the flat-combining pairing-heap delivers impressive perfor-
mance.

On the negative side, flat combining, at least in its sim-
plest form, is not always applicable. For example, most
search trees do not fit the above flat combining formula,
since the cost of applying k search operations to a tree re-
mains Θ(k log n), while a fine grained concurrent implemen-
tation allows multiple non-blocking parallel search traversals
to proceed in parallel in Θ(log n) time. Furthermore, even in
beneficially combinable structures, ones that have high lev-
els of mutation on the data structure, there is a point on the
concurrency scale in which the level of concurrency is such
that a finely synchronized parallel implementation will beat
the flat combining implementation. To make headway in
these cases, advanced forms of flat combining are necessary,
ones that involve multiple concurrent instances of flat com-
bining. Such structures are the subject of future research.

1.2 Related Work
The idea of having a single thread perform the announced

modifications of others on a concurrent data structure is
not new. However, till now, the overheads of the suggested
implementations have overshadowed their benefits.

The first attempt at combining operations dates back to
the original software combining tree paper of Yew et. al
[25]. In combining trees, requests to modify the structure

2There are also cases of structures in which the combined
cost is kδ which can to a certain extent benefit from flat
combining.

are combined from the leaves of the tree upwards. The tree
outputs n

log n
requests per time unit. The resulting data

structure is linearizable. However, each thread performs
Θ(log n) CAS based synchronization operations per access.
This overhead was improved by Shavit and Zemach in their
work on combining funnels [22], where trees of combined op-
erations are built dynamically and are thus shallower. Nev-
ertheless, as our empirical evidence shows, the synchroniza-
tion overhead makes combining trees non-starters as a basis
for concurrent data structure design.

A slightly different approach was taken by Oyama et. al
[26]. They protect the data structure with a single lock and
have threads form a list of requests on the lock. The thread
acquiring the lock services the pending requests of others
in LIFO order, and afterwards removes them from the list.
The advantage of this approach is a lower cache miss rate
on the accessed data structure because only a single thread
accesses it repeatedly. Its main drawback is that all threads
still need to perform CAS operations on the head of the
list of requests, so scalability is mostly negative, but better
than a naked lock. Since Oyama et. al were looking for a
general compiler based transformation, they did not consider
improved combining semantics for the data structures being
implemented.

The next attempt to have a single thread perform the
work of all others was the predictive log-synchronization ap-
proach of Shalev and Shavit [21]. They turned the Oyama
et. al LIFO list into a FIFO queue, and added a prediction
mechanism: threads do not wait for a response. Instead,
they traverse the list of requests, predicting the outcome of
their operation using the list as a log of the future modifi-
cations to be applied to the structure. To preserve the log
structure, they allow no combining of operations.

The log-synchronization technique, however, is only se-
quentially consistent [13], not linearizable, and is limited to
data structures to which effective prediction can be applied.
As with Oyama et. al, the multiple CAS operations on the
head of the queue limit scalability (the bottleneck on the
log is similar to that the Michael and Scott queue [17]), and
must be offset by a very high fraction of successfully pre-
dicting operations.

Unlike the above prior techniques, flat combining offers
two key advantages:

• Threads do not need to succeed in a CAS on a shared
location in order to have their request completed. In
the common case, they only need to write and spin
on a thread-local publication record, and read a single
shared cached location (the lock).

• Cache invalidation traffic is reduced not only because
the structure is accessed by a single thread while others
spin locally, but also because the combiner thread can
reduce the number of accesses due to the improved
semantics of the combined operations.

In Section 6 we provide empirical evidence as to how the
above two advantages lead to flat combining’s superior per-
formance.

2. FLAT COMBINING
Given a sequential data structure D, we design a flat com-

bining (henceforth FC) concurrent implementation of the
structure as follows.

As depicted in Figure 1, a few structures are added to
the sequential implementation: a global lock, a count of the
number of combining passes, and a pointer to the head of a
publication list. The publication list is a list of thread-local
records of a size proportional to the number of threads that
are concurrently accessing the shared object.

Each thread t accessing the structure to perform an invo-
cation of some method m on the shared object executes the
following sequence of steps:

1. Write the invocation opcode and parameters (if any) of
the method m to be applied sequentially to the shared
object in the request field of your thread local pub-
lication record (there is no need to use a load-store
memory barrier). The request field will later be used
to receive the response. If your thread local publi-
cation record is marked as active continue to step 2,
otherwise continue to step 5.

2. Check if the global lock is taken. If so (another thread
is an active combiner), spin on the request field waiting
for a response to the invocation (one can add a yield
at this point to allow other threads on the same core
to run). Once in a while while spinning check if the
lock is still taken and that your record is active. If
your record is inactive proceed to step 5. Once the
response is available, reset the request field to null and
return the response.

3. If the lock is not taken, attempt to acquire it and be-
come a combiner. If you fail, return to spinning in step
2.

4. Otherwise, you hold the lock and are a combiner.

• Increment the combining pass count by one.

• Execute a scanCombineApply() by traversing the
publication list from the head, combining all non-
null method call invocations, setting the age of
each of these records to the current count, apply-
ing the combined method calls to the structure
D, and returning responses to all the invocations.
As we explain later, this traversal is guaranteed
to be wait-free.

• If the count is such that a cleanup needs to be
performed, traverse the publication list from the
head. Starting from the second item (as we ex-
plain below, we always leave the item pointed to
by the head in the list), remove from the publi-
cation list all records whose age is much smaller
than the current count. This is done by removing
the node and marking it as inactive.

• Release the lock.

5. If you have no thread local publication record allocate
one, marked as active. If you already have one marked
as inactive, mark it as active. Execute a store-load
memory barrier. Proceed to insert the record into the
list with a successful CAS to the head. Then proceed
to step 1.

We provide the particulars of the combining function and its
application to a particular structure D in scanCombineAp-
ply() when we describe individual structures in later sec-
tions.

infrequently, new records are CASed

by threads to head of list, and old ones are

removed by combiner head

1

Thread G

4

request request request request request

age/actage/actage/actage/actage/act

Thread FThread A Thread CThread B

lock

0

0

0

0

0

0

0

0

0

0

0

9

1

1

5

0

2

0

11

0

25

0

15

0

8- +

1 1 1 1 1 1 1 0 0

sequential data structurepublication list

thread writes request and

spins on local record

2 thread acquires lock,

becomes combiner,

updates count

3 combiner traverses list,

performs scanCombineApply()

count

Figure 1: The flat combining structure. Each record in the publication list is local to a given thread. The
thread writes and spins on the request field in its record. Records not recently used are once in a while
removed by a combiner, forcing such threads to re-insert a record into the publication list when they next
access the structure.

There are a few points to notice about the above algo-
rithm. The common case for a thread is that its record is
active and some other thread is the combiner, so it com-
pletes in step 2 after having only performed a store and a
sequence of loads ending with a single cache miss.

In our implementation above we use a simple aging process
completely controlled by combining threads. In general we
expect nodes to be added and removed from the publication
list infrequently. To assure this, one can implement a more
sophisticated detection mechanism to control the decision
process of when to remove a node from the list.

Nodes are added using a CAS only to the head of the
list, and so a simple wait free traversal by the combiner is
trivial to implement [8]. Thus, removal will not require any
synchronization as long as it is not performed on the record
pointed to from the head: the continuation of the list past
this first node is only ever changed by the thread holding
the global lock. Note that the first item is not an anchor
or dummy node, we are simply not removing it. Once new
records are inserted, if it is unused it will be removed, and
even if no new nodes are added, leaving it in the list will not
affect performance.

The removal of a node is done by writing a special mark
bit that indicates that the node is inactive after it is removed
from the list. In order to avoid the use of memory barriers
in the common case, we must take care of the case in which
a late arriving thread writes its invocation after the record
has been removed from the list. To this end, we make sure
to mark a removed record as inactive, and make this mark
visible using a memory barrier, so that the late arriving
thread will eventually see it and add its record back into the
publication list.

We now proceed to show how FC is applied to the design
of several popular concurrent data structures.

3. FLAT COMBINING QUEUES AND STACKS
Shared queues lend themselves nicely to flat combining,

since on the one hand they have inherent sequential bot-
tlenecks that are difficult to overcome by using fine-grained

synchronization, and on the other allow one to effectively
apply combined sequences of operations.

We provide a linearizable FC FIFO queue implementa-
tions where the queue D is a linked list with head and tail
pointers, and “fat” nodes that can contain multiple items in
an indexed array (We can do this effectively because only
a single combiner thread at a time will access this list. Us-
ing this approach in a concurrent setting would make the
counter controlling traversal of the fat node entries a hot
spot). To access the queue, a thread t posts the respective
pair <ENQ,v> or <DEQ,0> to its publication record and
follows the FC algorithm.

The combiner executing scanCombineApply() scans the
publication list. For each non-null request, if it is an <ENQ,v>
of value v, the item is added to the fat node at the tail of the
queue, and if the queue is full a new one is allocated. An OK
response is written back to the request field. If the request
is a <DEQ,0>, an item is removed from the fat node at the
head of the queue and written back to the request field. If
the reader wonders why this is linearizable, notice that at
the core of FC is the idea that if a posted request by some
thread was missed by the combiner, then even if a request
that started later was seen and successfully applied to the
queue, the method call of the missed request is still pending,
and so can be linearized after the one that succeeded.

Our concurrent linearizable LIFO stack implementation
is similar to the FC queue algorithm described above. The
data-structure is a linked list of fat nodes with a single top
pointer. To push value v, a thread t writes the values-pair
<PUSH,v> to its entry of the combine array. In the scan-
CombineApply(), the combiner services all requests from the
fat node pointed to from the top.

As we show in Section 6, the low FC synchronization over-
head and the locality of having a single thread at a time
access a cached array of items in a fat node allow our FC
stack and queue implementations to greatly outperform all
prior-art algorithms.

4. FLAT COMBINING PRIORITY QUEUES
A priority queue is a multiset of items, where each item

has an associated priority – a score that indicates its im-
portance (by convention, the smaller the score, the higher
the priority). A priority queue supports two methods: add,
for adding an item to the multiset, and removeMin, for re-
moving and returning an item with minimal score (highest
importance). For presentation simplicity, in the descrip-
tions that follow we assume that each item only stores a
key, rather than storing both a key and priority value.

The prior art in this area includes a linearizable heap algo-
rithm by Hunt et. al [11] and a skiplist-based priority queue
due to Shavit and Lotan [15].

We present two FC based linearizable concurrent prior-
ity queue implementations, one based on a skiplist [19] and
another based on a pairing heap [3].

4.1 A Flat Combining Skiplist Based Priority
Queue

A skiplist [19] is a probabilistic data-structure, represent-
ing a multiset of nodes, ordered by their keys. A skiplist
appears in the righthand side of Figure 1. The skiplist is
composed of a collection of sorted linked lists. Each node
consists of a key and an array of pointers that link it to
a subset of the lists. Each list has a level, ranging from
0 to some maximum. The bottom-level list contains all the
nodes, and each higher-level list is a sublist of the lower-level
lists. The higher-level lists can be viewed as shortcuts into
the lower-level lists. The skiplist has two sentinel nodes of
maximal height with minimal and maximal keys. Skiplists
support add, remove, and find methods.

One could readily implement a priority queue that sup-
ports add and removeMin using a skiplist by having add
methods add an item to the skiplist, and have the removeMin
method use the bottom (lowest level) pointer in the sentinel
with the minimal key, then removing the node it points to
from the skiplist, as this is the minimal key at any given
point. The cost of both add and removeMin are Θ(log n),
as one needs to traverse the skiplist from the highest level
to add or remove an item.

For our use, we implement removeSmallestK and com-
binedAdd methods. The removeSmallestK method receives
as its parameter a number k and returns a list consisting of
the k smallest items in the skiplist. It does so as follows:

• Traverse the lowest level of the skiplist from the mini-
mal sentinel until k items (or fewer if the skiplist con-
tains less than k items) have been traversed. Collect
these items, they are the k minimal items to be re-
turned.

• Perform a find traversal of the skiplist, searching for
the key of the k + 1-th minimal item found. The find
operation is called for locating the predecessors and
successors of newMin in all the linked lists.3 In all the
lists which do not contain newMin, the head node is
set to point to the first node greater than newMin.

We observe that the combined removal performed by the
removeSmallestK method searches only once in each linked
list. It thus removes the k minimal items while performing

3This is the regular semantics of the find operation on
skiplists.

work corresponding to a single removal. The overall com-
plexity of removeSmallestK is thus Θ(k + log n) as opposed
to Θ(k log n) for k uncombined removals from a skiplist.

The combinedAdd method will also reduce the overall cost
of adding k nodes by making only a single pass through the
skiplist. It receives a list of items <i1, i2, . . . , ik>, sorted
in increasing order of their keys, and inserts them to the
skiplist. This is done as follows. First, a highest level is
selected at random for each of the k items. Then, the ap-
propriate location of i1 in the skiplist is searched, starting
from the topmost list. The key idea is that, once the search
arrives at a list and location where the predecessor and suc-
cessor of i1 and i2 differ, that location is recorded before the
search of i1 proceeds. Once the search of i1 terminates, the
search of i2 is resumed starting from the recorded location
instead of starting from the top list again. This optimization
is applied recursively for all subsequent items, resulting in
significant time saving in comparison with regular addition
of these k items.

The implementation of our scanCombineApply is immedi-
ate: when scanning the publication list, collect two respec-
tive lists, of the requests to add and of those to removeMin.
Count the number of requests and apply the removeSmall-
estK, and sort the linked list of add requests4, then apply
the combinedAdd method, returning the appropriate results
to the requesting threads.

4.2 A Flat Combining Pairing Heap Based Pri-
ority Queue

But this is not the end of the story for priority queues. The
power of FC as a programming paradigm is that the data
structure D at the core of the implementation is sequential.
This means we can actually use the most advanced prior-
ity queue algorithm available, without a need to actually
think about how to parallelize it. We thus choose to use a
pairing heap [3] structure, a state-of-the-art heap structure
with O(1) amortized add complexity and O(log n)) amor-
tized removeMin complexity with very low constants, as the
basis for the FC algorithm. We will not explain here why
pairing heaps have impressive performance in practice and
readers interested in analytic upper bounds on their com-
plexity are referred to [18]. We simply took the sequential
algorithm’s code and plopped it as-is into the FC framework.
The result: a fast concurrent priority queue algorithm that
by Lemma 1 is provably linearizable. As we noted earlier,
based on our experience, devising a provably correct and
scalable linearizable implementation of a concurrent pairing
heap using fine-grained synchronization would in itself con-
stitute a publishable result. We hope a similar approach can
be taken towards creating linearizable concurrent versions of
other complex data structures.

5. FLAT COMBINING CORRECTNESS AND
PROGRESS

In this section we outline correctness and progress argu-
ments for the flat combining technique. For lack of space,
we do not cover the details of the management of the publi-
cation list, and choose to focus on outlining the linearizable
and starvation-free behavior of threads with active publica-
tion records. We also confine the discussion in this section

4Our current implementation uses bubble sort.

to FC implementations that protect the publication list by
a single lock.

Linearizability [9] is widely accepted as a correctness con-
dition of shared object implementations. Informally, it states
that, in every execution of the object implementation, each
operation on the implemented object appears to take effect
instantaneously at some (linearization) point between the
operation’s invocation and response (or possibly not at all
if the operation is pending at the end of the execution).

To prove that an implementation is linearizable, one must
show that a linearization can be found for each of the im-
plementation’s executions. An execution linearization is de-
fined by specifying linearization points for all complete oper-
ations (and possibly also for some pending operations), such
that the operations’ total order defined by the linearization
is a legal sequential history of the implemented object.

We say that an implementation of the scanCombineApply
method is correct if it satisfies all the following requirements:
(1) it operates as described in Section 2, (2) it does not
access the FC lock protecting the publication list, and (3) it
returns operation responses in the order in which it applies
the operations to the data structure.

Lemma 1. An FC implementation using a correct scan-
CombineApply method is linearizable.

Proof outline. The use of a single FC lock protecting
the publication list and the correctness of the scanCom-
bineApply method guarantee that executions of the scan-
CombineApply method are sequential, since there is at most
a single combiner thread at any given time. A combiner
thread t sequentially applies a set of combined operations
to the data-structure representing the implemented object
in the course of performing the scanCombineApply method.
We linearize each applied operation just before the combiner
writes its response to the respective publication record.

The total order specified by the resulting linearization is
clearly a legal sequential history of the implemented ob-
ject, since, from the correctness of the scanCombineApply
method, the operations are sequentially applied to the im-
plemented object in exactly this order.

To conclude the proof, we show that each linearization
point lies between the invocation and response of the corre-
sponding operation. This holds trivially for the operation of
the combiner. As for operations of non-combiner threads,
it follows from the FC algorithm and the correctness of
the scanCombineApply method that each such thread starts
spinning on its record before its linearization point and can
only return a response after the combiner has written to
its publication record, which happens after its linearization
point.

Lemma 2. An FC implementation using a correct scan-
CombineApply method is starvation-free.

Proof outline. Since nodes can only be inserted to the
publication list immediately after its head node, scanCom-
bineApply is wait-free. Let t be a thread whose publication
record is constantly active. If t becomes a combiner, the
claim is obvious. If t fails to acquire the lock, then there is
another active combiner t′. From the correctness and wait-
freedom of the scanCombineApply method, either t′ or the
subsequent combiner thread (possibly t itself) will apply t’s
operation and write the response to t’s publication record.

6. PERFORMANCE EVALUATION
For our experiments we used two machines. The first is

a 128-way Enterprise T5140 R© server (Maramba) machine
running SolarisTM 10. This is a 2-chip Niagara system in
which each chip has 8 cores that multiplex 8 hardware threads
each and share an on chip L2 cache. We also used an In-
tel Core2 R© i7 (Nehalem) processor with 4 cores that each
multiplex 2 hardware threads. We ran benchmarks in C++
using the same compiler on both machines, and using the
scalable Hoard memory allocator [1] to ensure that malloc
calls are not a sequential bottleneck.

6.1 Flat combining versus prior techniques
We begin our empirical evaluation by examining the rel-

ative performance of FC with respect to prior known par-
allelization techniques. We start by presenting data for im-
plementations of a concurrent FIFO queue. The presented
graphs are the average of 3 executions, each taking 10 sec-
onds.

We evaluated a flat combining based queue (denoted as
fc) as described in Section 3. We compared it to the most
effective known queue implementations: the lock-free queue
by Michael and Scott [20] (henceforth the MS-queue) used in
the Java concurrency package and the basket queue of Hoff-
man et. al [10]. Michael and Scott’s lock-free queue algo-
rithm represents a queue as a singly-linked list with head and
tail pointers, which are modified by CAS operations. The
basket queue algorithm permits higher concurrency levels
by allowing enqueue operations to operate on multiple bas-
kets of mixed-order items instead of a single central location.
We also compared them to implementations of queues using
prior global lock based techniques: Oyama et. al’s algorithm
[26], combining trees [25], and Shalev and Shavit’s predictive
log-synchronization [21], as described in Section 1.2.

As the reader may recall, the Oyama et. al technique
created a list of requests, each added using a CAS operation,
and then operated on these requests one after the other. It
does not combine requests. In order to understand which
fraction of the FC advantage comes from the publication
list mechanism itself, and which from the gain in locality by
having a single combiner access the structure, we added a
version of Oyama et. al in which we add the same combining
feature FC uses. In the case of a queue, this is the use of
“fat nodes” that hold multiple items to collect requests, and
add these many requests in one pointer swing of the fat node
into the structure.

In the throughput graph in Figure 2, one can clearly see
that from about 4 threads and on the flat combining imple-
mentation starts to increasingly outperform all others and
is from 4 to 7 times faster than the MS queue, the fastest of
the prior techniques. Moreover, one can see that Oyama et.
al, combining trees, and log-synchronization do not scale. In
fact, Oyama scales only a bit better when we add the com-
bining feature. This leads us to the conclusion that, at least
for queues, the main advantage of FC is in the low overheads
of the publication mechanism itself.

The explanation for the significantly better FC behavior
is provided in the other three graphs in Figure 2. As can
be seen, the MS queue requires on average 1.5 successful
CASes per operations (this is consistent with the MS queue
code), but suffers increasing levels of CAS failures, as does
the basket queue. The combining tree requires increasing
numbers of successful CASes as the tree grows to accommo-

Figure 2: Concurrent FIFO Queue implementations:
throughput (number of operations), average CAS
failures (per operation), average CAS successes (per
operation), and L2 cache misses (per operation).

date more threads. The number of failed CASes increases
significantly as concurrency grows, explaining the tree’s poor
behavior. Similar failed CAS overheads hurt Oyama et. al.
Log-synchronization requires only 3 successful CASes on av-
erage, and because of prediction threads do not compete for
the lock, avoiding high CAS failure rates, and eventually
overtaking the performance of the MS and basket queue al-
gorithms.

Figure 3: FIFO Queue throughput on the Nehalem
architecture.

The most telling graph though is that of the L2 cache
miss rates on the Niagara architecture, a dominant perfor-
mance factor in multicore machines. Notice that the graph
uses a logarithmic scale. As we can see, Oyama et. al and
combining trees have two or more orders of magnitude more
cache misses than the FC algorithm. Even the best non-FC
technique, the MS-queue, has at some concurrency levels
about two orders of magnitude more cache misses than the
FC algorithm.

Unlike other general techniques, the flat combining imple-
mentation requires on average almost no CAS successes to
complete, and has a negligible CAS failure rate. Its cache
miss rate is very low. It is therefore not by chance that the
FC queue outperforms the best hand crafted solution on the
Niagara architecture by a wide margin.

Figure 3 shows similar behavior on the Nehalem architec-
ture. Here we see that all the algorithms exhibit negative
scalability, and yet the FC algorithm is again superior to
all others. The cache miss and CAS rate graphs we do not
present provide a similar picture to that on the Niagara.

6.2 Stacks
We now consider linearizable concurrent LIFO Stacks.

We compare our flat-combining queue with Treiber’s lock-
free stack implementation [23] (denoted as ‘lock free’ in the
graphs). Treiber’s algorithm represents the stack as a singly-
linked list pointed at by a top pointer which is manipulated
by CAS operations. We also compare to Hendler et. al’s [6]
linearizable elimination-backoff stack.

Figure 4 shows the throughput of the flat combining stack,
the elimination-backoff stack, and Treiber stack on the two
platforms. On the Maramba (Sparc) machine flat com-
bining clearly outperforms Treiber’s algorithm by a wide
margin (a factor of 9) because Treiber’s algorithm top is a
CAS synchronization bottleneck. The performance of the
elimination-backoff stack algorithm improves to reach that

Figure 4: The throughput of LIFO stack implemen-
tations.

of flat combining, since the benchmark supplies increasing
equal amounts of concurrent pushes and pops that can be
eliminated. Note that with a different ratio of pushes and
pops the elimination queue will not perform as well. How-
ever, as can be seen, at lower concurrency rates the flat
combining stack delivers more than twice the throughput
of elimination-backoff stack. On the Nehalem machine, flat
combining is the clear winner until there are more software
threads than hardware threads, at which point its perfor-
mance becomes about the same as that of the elimination-
backoff stack.

6.3 Priority Queues
We compare our two flat combining priority queue imple-

mentations from Section 4: the skiplist based one (denoted
as fc skiplist) and the pairing-heap based one (denoted as
fc pairing heap) with the best performing concurrent pri-
ority queue in the literature, the skiplist-based concurrent
priority queue due to Lotan and Shavit [15] (its performance
has been shown to be significantly better than that of the
linearizable concurrent heap algorithm due to Hunt et. al
[11]). The Lotan and Shavit algorithm has threads add items
based on their priorities to the skiplist. Each item occupies
a node, and the node has a special “logically deleted” bit.
To remove the minimal items, threads compete in perform-
ing a series of CAS operations along the bottom level of the
skiplist. Each thread does that until it encounters the first
non-deleted node it manages to CAS to a deleted state. It
then performs a call to the regular skiplist remove method to
remove the node from the list. We compare to two versions
of the [15] algorithm, one in which the skiplist is lock-free
and another in which it is a lazy lock-based skiplist (see [8]

for details). These priority queue algorithms are quiescently
consistent but not linearizable [8], which gives them an ad-
vantage since making them linearizable would require to add
an access to a global clock variable per insert which would
cause a performance deterioration.

Figure 5: The throughput of Priority Queue imple-
mentations.

Figure 5 shows the throughput of the priority queue al-
gorithms on the two platforms. The lazy lock-based skiplist
outperforms the lock-free one since it requires fewer CAS
synchronization operations per add and remove. This re-
duces its overhead and allows it to be competitive at low
concurrency levels since it has a certain degree of parallelism
and a reasonable overhead. However, as concurrency in-
creases the competition for marking nodes as logically deleted,
together with the fact that most remove-min operations oc-
cur on the same nodes at the head of the list, causes a de-
terioration. As concurrency increases, the algorithm is in-
creasingly outperformed by the FC skiplist algorithm. The
surprising element here is that that best performance comes
from the pairing heap based algorithm. The use of flat com-
bining allows us to make direct use of this sequential algo-
rithm’s great efficiency, O(1) for an insert, and an amortized
O(log n) per remove, without paying a ridiculously high syn-
chronization price in a fine grained implementation (assum-
ing a scalable and provably linearizable fine grained pairing
heap implementation is attainable at all).

6.4 Performance as Arrival Rates Change
In earlier benchmarks, the data structures were tested at

very high arrival rates. These rates are common to some
uses of concurrent data structures, but not to all. In Fig-
ure 6, we return to our queue benchmark to show the change
in throughput of the various algorithms as the method call

arrival rates change when running on 32 threads. In this
benchmark, we inject a “work”period between calls a thread
makes to the queue. The work consists of an equal number
of reads and writes to random locations. As can be seen, as
the request arrival rate decreases (the total number of reads
and writes depicted along the x-axis increases), the rela-
tive performance advantage of the FC algorithm decreases,
while all other methods mostly remain unchanged (apart
from log-synchronization, which, as it seems, benefits from
the reduced arrival rate as there is less contention on the
queue and less cache invalidation behavior while threads tra-
verse the log during prediction). Nevertheless, the FC queue
algorithm remains superior or equal to all other methods
throughout.

Figure 6: Performance as Arrival Rates Change.
Work along the X-axis is the number of reads and
writes between accesses to the shared queue.

7. DISCUSSION
We presented flat combining, a new synchronization paradigm

based on the idea that having a single thread holding a lock
perform the combined access requests of all others, delivers
better performance through a reduction of synchronization
overheads and cache invalidations. There are many ways in
which our work can be extended, and we encourage others
to continue this work.

Obviously there are many data structures that could ben-
efit from the FC approach, we have only presented a few
representative ones.

An interesting aspect is that FC will be a natural fit with
the heterogenous multicore architectures of the future: the
more powerful cores can get a preference in acquiring the
global lock, or in some cases be assigned as combiners in a
static way.

The flat combining process itself could benefit from a dy-
namic/reactive ability to set its various parameters: the
number of combining rounds a combiner performs consecu-
tively, the level of polling each thread performs on the com-
bining lock, which threads get higher priority in becoming
combiners, and so on. One way to do so is to perhaps use
the machine learning-based approach of smartlocks [2].

Another interesting line of research is the use of multiple
parallel instances of flat combining to speed up concurrent
structures such as search trees and hash tables. Here the
idea would be an extension of the style of our queue imple-
mentation: have a shared data structure but reduce over-

head in bottleneck spots using flat combining. We have re-
cently been able to show how this parallel flat-combining ap-
proach can benefit the design of unfair synchronous queues
[5].

Finally, it would be interesting to build a theoretical model
of why flat combining is a win, and what its limitations are.

8. ACKNOWLEDGEMENTS
This paper was supported by the European Union grant

FP7-ICT-2007-1 (project VELOX), as well as grants from
Sun Microsystems, Intel Corporation, and a grant 06/1344
from the Israeli Science Foundation.

9. REFERENCES
[1] Berger, E. D., McKinley, K. S., Blumofe, R. D.,

and Wilson, P. R. Hoard: a scalable memory
allocator for multithreaded applications. SIGPLAN
Not. 35, 11 (2000), 117–128.

[2] Eastep, J., Wingate, D., Santambrogio, M., and
Agarwal, A. Smartlocks: Self-aware synchronization
through lock acquisition scheduling. In 4th Workshop
on Statistical and Machine learning approaches to
ARchitecture and compilaTion (SMARTŠ10) (2009).

[3] Fredman, M. L., Sedgewick, R., Sleator, D. D.,
and Tarjan, R. E. The pairing heap: A new form of
self-adjusting heap. Algorithmica 1, 1 (1986), 111–129.

[4] Hanke, S. The performance of concurrent red-black
tree algorithms. Lecture Notes in Computer Science
1668 (1999), 286–300.

[5] Hendler, D., Incze, I., Shavit, N., and Tzafrir,
M. Scalable flat-combining based synchronous queues,
2010.

[6] Hendler, D., Shavit, N., and Yerushalmi, L. A
scalable lock-free stack algorithm. In SPAA ’04:
Proceedings of the sixteenth annual ACM symposium
on Parallelism in algorithms and architectures (New
York, NY, USA, 2004), ACM, pp. 206–215.

[7] Herlihy, M., Lev, Y., and Shavit, N. A lock-free
concurrent skiplist with wait-free search, 2007.

[8] Herlihy, M., and Shavit, N. The Art of
Multiprocessor Programming. Morgan Kaufmann, NY,
USA, 2008.

[9] Herlihy, M., and Wing, J. Linearizability: A
correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems
12, 3 (July 1990), 463–492.

[10] Hoffman, M., Shalev, O., and Shavit, N. The
baskets queue. In OPODIS (2007), pp. 401–414.

[11] Hunt, G. C., Michael, M. M., Parthasarathy,
S., and Scott, M. L. An efficient algorithm for
concurrent priority queue heaps. Inf. Process. Lett. 60,
3 (1996), 151–157.

[12] Kung, H., and Robinson, J. On optimistic methods
for concurrency control. ACM Transactions on
Database Systems 6, 2 (1981), 213–226.

[13] Lamport, L. How to make a multiprocessor computer
that correctly executes multiprocess programs. IEEE
Transactions on Computers C-28, 9 (September 1979),
690.

[14] Lea, D. util.concurrent.ConcurrentHashMap in
java.util.concurrent the Java Concurrency Package.

http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/-
src/main/java/util/concurrent/.

[15] Lotan, I., and Shavit., N. Skiplist-based concurrent
priority queues. In Proc. of the 14th International
Parallel and Distributed Processing Symposium
(IPDPS) (2000), pp. 263–268.

[16] Mellor-Crummey, J., and Scott, M. Algorithms
for scalable synchronization on shared-memory
multiprocessors. ACM Transactions on Computer
Systems 9, 1 (1991), 21–65.

[17] Michael, M. M., and Scott, M. L. Simple, fast,
and practical non-blocking and blocking concurrent
queue algorithms. In Proc. 15th ACM Symp. on
Principles of Distributed Computing (1996),
pp. 267–275.

[18] Pettie, S. Towards a final analysis of pairing heaps.
In Data Structures (Dagstuhl, Germany, 2006),
L. Arge, R. Sedgewick, and D. Wagner, Eds.,
no. 06091 in Dagstuhl Seminar Proceedings,
Internationales Begegnungs- und Forschungszentrum
für Informatik (IBFI), Schloss Dagstuhl, Germany.

[19] Pugh, W. Skip lists: a probabilistic alternative to
balanced trees. ACM Transactions on Database
Systems 33, 6 (1990), 668–676.

[20] Scott, M. L., and Scherer, W. N. Scalable
queue-based spin locks with timeout. ACM SIGPLAN
Notices 36, 7 (2001), 44–52.

[21] Shalev, O., and Shavit, N. Predictive log
synchronization. In Proc. of the EuroSys 2006
Conference (2006), pp. 305–315.

[22] Shavit, N., and Zemach, A. Combining funnels: a
dynamic approach to software combining. J. Parallel
Distrib. Comput. 60, 11 (2000), 1355–1387.

[23] Treiber, R. K. Systems programming: Coping with
parallelism. Tech. Rep. RJ 5118, IBM Almaden
Research Center, April 1986.

[24] Tzafrir, M. C++ multi-platform memory-model
solution with java orientation.
http://groups.google.com/group/cpp-framework.

[25] Yew, P.-C., Tzeng, N.-F., and Lawrie, D. H.
Distributing hot-spot addressing in large-scale
multiprocessors. IEEE Trans. Comput. 36, 4 (1987),
388–395.

[26] Yonezawa, O. T., Oyama, Y., Taura, K., and
Yonezawa, A. Executing parallel programs with
synchronization bottlenecks efficiently. In in
Proceedings of International Workshop on Parallel and
Distributed Computing for Symbolic and Irregular
Applications (PDSIA ’99). Sendai, Japan: World
Scientific (1999), World Scientific, pp. 182–204.

